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ABSTRACT
Multi-objective genetic algorithms have been often used to opti-
mize classification systems, but little is discussed on their compu-
tational cost to solve such problems. This paper optimizes a clas-
sification system with an annealing based approach, the Record-to-
Record Travel algorithm. Results obtained are compared to those
obtained with a multi-objective genetic algorithm in the same ap-
proach. Experiments are performed with isolated handwritten dig-
its and uppercase letters, demonstrating both the effectiveness and
lower computational cost of the annealing based approach.
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1. INTRODUCTION
Image pixel information is traditionally transformed by a feature

extraction process prior to classification. A process performed to
reduce data complexity and select the most relevant information
from images. Zoning is often used to improve the features discrim-
inatory power [1, 6], instead of using the whole image for classifi-
cation. Both feature extraction and zoning have important roles in
the classification stage, but are defined on a trial and error basis by
an human expert. Associated to this burden, one classification sys-
tem is adapted to a specific domain. Figure 1 details the difficulties
faced by changing the handwriting style. Thus, the same classifi-
cation system can not be used on another problem with the same
reliability, unless the classification system is properly adapted to
the new context.

This context mandates a semi-automated approach that uses the
expert’s domain knowledge to optimize the classification system.
To minimize the human intervention in defining and adapting clas-
sification systems, this problem is modeled as an optimization prob-
lem, using the expert’s domain knowledge and information from
the domain context – actual images. This paper discusses the two-
level approach to optimize classification systems in Fig. 2. The first
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Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.
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Figure 1: Handwritten digits: (a) NIST SD-19 and (b) Brazilian
checks.

level employs the Intelligent Feature Extraction (IFE) methodology
to extract feature sets. These feature sets are then used on the sec-
ond level to optimize an ensemble of classifiers (EoC) to improve
classification accuracy.

The literature demonstrates that genetic based approaches are
frequently used to optimize classification systems [2, 5, 12, 13],
specially multi-objective genetic algorithms (MOGAs). It is now
understood that the advantage of MOGAs lies in the inherent di-
versity of the optimized solution set, avoiding the population con-
vergence to a single local optimum. However, population based
approaches evaluate a large number of candidate solutions. When
using a wrapper approach, training and testing solutions takes a
considerable time. Hence, the use of other algorithms may provide
comparable solutions associated to a lower computational burden.
The algorithm chosen for a comparative study is the Record-to-
Record Travel (RRT) algorithm [8], an annealing based heuristic.
This local search algorithm features a strategy to avoid local opti-
mum solutions, a feature often required to optimize classification
problems.

This paper extends the work in [9] using MOGAs. The new con-
tribution is to investigate the annealing based approach to optimize
classification systems for a quantitative comparison with MOGA
results. The paper has the following structure. The approach to op-
timize classification systems is discussed in Section 2, and Section
3 discusses the RRT algorithm. Section 4 details the experimen-
tal protocol, and Section 5 the results obtained. Finally, Section 6
discusses the goals attained and future works.
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Figure 2: Classification system optimization approach.

2. CLASSIFICATION SYSTEMS OPTIMIZA-
TION

Classification systems are modeled in a two-level process (Fig.
2). The first level uses the IFE methodology to obtain the repre-
sentation set RSIFE (Fig. 2.a) – feature sets. The representations
in RSIFE are then used to train the classifier set K that is consid-
ered for aggregation on an EoC SE for improved accuracy (Fig.
2.b). Otherwise, if a single classifier is desired for limited hard-
ware, such as embedded devices, the most accurate single classifier
SI may be selected from K. The next two subsections details both
the IFE and EoC optimization methodologies.

2.1 Intelligent Feature Extraction
The goal of IFE is to help the human expert define representa-

tions in the context of isolated handwritten symbols, using a wrap-
per approach to optimize solutions. IFE models handwritten sym-
bols as features extracted from specific foci of attention on images
using zoning. Two operators are used to generate representations
with IFE: a zoning operator to define foci of attention over images,
and a feature extraction operator to apply transformations in zones.
The choice of transformations for the feature extraction operator
constitutes the domain knowledge. The domain context is intro-
duced as actual observations in the optimization data set used to
evaluate and compare solutions. Hence, the zoning operator is op-
timized by the IFE to the domain context and domain knowledge.

The IFE structure is illustrated in Fig. 3. The zoning operator de-
fines the zoning strategy Z = {z1, . . . , zn}, where zi, 1 ≤ i ≤ n
is a zone in the image I and n the total number of zones. Pixels in-
side the zones in Z are transformed by the feature extraction oper-
ator in the representation F = {f1, . . . , fn}, where f i, 1 ≤ i ≤ n
is the partial feature vector extracted from zi. At the end of the
optimization process, the optimization algorithm has explored the
representation set RSIFE = {F 1, . . . , F p} (for MOGAs, RSIFE

is the optimal set at the last generation).
The result set RSIFE is used to train the classifier set K =

{K1, . . . , Kp}, where Ki is the classifier trained with representa-
tion F i. The first hypothesis is to select the most accurate classifier
SI, SI ∈ K for a single classifier system. The second hypothesis
is to use K to optimize an EoC for higher accuracy, an approach
discussed in Section 2.2. The remainder of this section discusses

the IFE operators chosen for experimentation with isolated hand-
written digits and the candidate solution evaluation.

2.1.1 Zoning Operator
To compare performance to the traditional human aproach, a

baseline representation with a high degree of accuracy on hand-
written digits with a multi-layer Perceptron (MLP) classifier [7] is
considered. This baseline representation was defined on a tradi-
tional trial and error basis. Its zoning strategy, detailed in Fig. 4.b,
is defined as a set of three image dividers, producing 6 zones. The
divider zoning operator expands the baseline zoning concept into a
set of 5 horizontal and 5 vertical dividers that can be either active
or inactive, producing zoning strategies with 1 to 36 zones. Fig-
ure 4.a details the operator template, encoded by a 10-bit binary
string. Each bit is associated with a divider’s state (1 for active, 0
for inactive).
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Figure 4: Divider zoning operator (a). The baseline represen-
tation in (b) is obtained by setting only d2, d6 and d8 as active.

2.1.2 Feature Extraction Operator
The classification system in [7] used and detailed a mixture of

concavities, contour directions and black pixel surface transforma-
tions, extracting 22 features per zone (13 for concavities, 8 for
contour directions and 1 for surface). To allow a direct compari-
son between IFE and the baseline representation, the same feature
transformations (the domain knowledge) are used to assess the IFE.

2.1.3 Candidate Solution Evaluation
Candidate solutions are evaluated with respect to their classifica-

tion accuracy. Thus, the objective is to minimize the classification
error rate on the optimization data set (the domain context). To
compare optimization methods, candidate solutions are evaluated
with the projection distance (PD) classifier [3].

2.2 EoC Optimization
Several classifiers may be combined to improve their overall per-

formance. Algorithms for creating EoCs will usually fall into one
of two main categories. They either manipulate the training sam-
ples for each classifier in the ensemble (like Bagging and Boost-
ing), or they manipulate the feature set used to train classifiers [5].
The key issue is to generate a set of diverse and fairly accurate clas-
sifiers for aggregation [4].

We create EoCs on a two-level process. The first level creates a
classifier set K with IFE, and the second level optimizes the clas-
sifiers aggregated. We assume that RSIFE generates a set K of p
diverse and fairly accurate classifiers. To realize this task, the clas-
sifiers in K are associated with a binary string E of p bits, which
is optimized to select the best combination of classifiers using an
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Figure 3: IFE structure.

optimization algorithm. The classifier Ki is associated with the ith

binary value in E, which indicates whether or not the classifier is
active in the EoC.

The optimization process minimizes the EoC classification error
on the optimization data set. This is supported by [11]. Evaluating
the EoC error rate requires actual classifier aggregation. PD clas-
sifiers are aggregated by majority voting, and votes are calculated
once and stored in memory to speed up the opimization process.

3. OPTIMIZATION ALGORITHM
The Record-to-Record Travel (RRT) algorithm [8], is an anneal-

ing based heuristic. It is said to be a local search algorithm, search-
ing for new solutions in the vicinity of the current solution. The
RRT algorithm improves an initial solution i by searching in its
neighborhood for better solutions based on their evaluation (clas-
sification error rate). The RRT algorithm, detailed in Algorithm 1,
produces after a number of iterations the record solution r. The
algorithm is similar to a hill climbing approach, but avoids local
optimum solutions by allowing the search towards non-optimal so-
lutions with a fixed deviation D. Earlier experiments indicated
that the RRT algorithm over-fitted solutions during the optimiza-
tion process. The global validation strategy discussed in [10] is
used to avoid this effect, and Algorithm 1 includes support for this
strategy.

Data: Initial solution i
Data: Deviation D
Result: Record solution r
Result: Explored solution set S
r = i;
RECORD = eval(r);
p = i;
S = ∅;
repeat

Create the solution set P , neighbor to p;
S = S ∪ P ;
Select the best solution p′ ∈ P such as that p′ has not yet
been evaluated;
if eval(p′) < RECORD + RECORD × D then

p = p′;
if eval(p′) < RECORD then

RECORD = eval(p′);
r = p′;

end
end

until eval(p) <= RECORD + RECORD × D ;

Algorithm 1: Modified record to record travel (RRT) algorithm
used to optimize classification systems with global validation.

Given the initial solution i, the algorithm will copy it to the
record solution r and store its evaluation value in RECORD. It
also copies i as the current solution p. Next it will repeat the follow-
ing process during a number of iterations, until the current solution
is worse than the record solution plus the allowed deviation. First
it will find the set P , solutions neighbor to p, and select the best
neighbor p′, p′ ∈ P . To avoid cyclic optimization, solutions al-
ready evaluated are not considered for p′. If evaluating p′ yields
results within the allowed deviation, it is copied as p for the next
iteration. Solution p′ replaces the record solution r only if it yields
better results. If p′ is worse than the allowed deviation, the opti-
mization process stops. The explored solution set S is responsible
to store solutions tested by the RRT algorithm for the global vali-
dation strategy. At each iteration, the algorithm inserts into S the
solutions in the neighbor set P . At the end of the optimization pro-
cess, solutions in S are validated and the most accurate solution is
selected. For the IFE process, S is the result set RSIFE used to
create the classifier set K.

Neighbors to solution Xi are created by swapping bits in the
binary string with their complement. For a binary string E with
p bits, a set of p neighbors is created by complementing each bit
i, 1 ≤ i ≤ p on solution Ei. For the IFE, solution in Fig. 5.a has
solutions in Figs. 5.b and 5.c as two possible neighbors.

(a) (b) (c)

Figure 5: Zoning strategy (a) and two neighbors (b and c) using
the proposed divider zoning operator.

4. EXPERIMENTAL PROTOCOL
The tests are performed as in Fig. 2. The IFE methodology

is solved to obtain the representation set RSIFE , which is used
to train the classifier set K . For a single classifier system, the
most accurate classifier SI, SI ∈ K is selected. EoCs are then
created with K, producing the ensemble SE. To select the most
accurate solution in the result set S, we use the global validation
approach detailed in [10]. The full process is performed for both
digits and uppercase letters. Solutions obtained are compared to
the baseline representation defined in [7] and to solutions obtained
with MOGAs in [9]. Unlike MOGAs, which may produce different
solutions on each run, the RRT algorithm will yield the same result
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set S for the same initial solution i. Thus, solutions obtained with
the RRT are compared to both average results in [9] and to the best
result obtained in 30 runs.

The data sets in Tables 1 and 2 are used in the experiments –
isolated handwritten digits and letters from NIST SD-19. Classifier
training is performed with the training data set. The validation data
set is used to adjust the classifier parameters (PD hyper planes).
The optimization process is performed with the optimization data
set, and the selection data set is used with the global validation
strategy to select solutions. The test databases are used to compare
solutions, where testb (handwritten digits) is known to require a
robust classifier for higher accuracies.

Table 1: Handwritten digits data sets extracted from NIST SD-
19.

Data set Size Origin Sample range

training 50000 hsf 0123 1 to 50000

validation 15000 hsf 0123 150001 to 165000

optimization 15000 hsf 0123 165001 to 180000

selection 15000 hsf 0123 180001 to 195000

testa 60089 hsf 7 1 to 60089

testb 58646 hsf 4 1 to 58646

Table 2: Handwritten uppercase letters data sets extracted
from NIST SD-19.

Data set Size Origin Sample range

training 43160 hsf 0123 1 to 43160

validation 3980 hsf 4 1 to 3980

optimization 3980 hsf 4 3981 to 7960

selection 3980 hsf 4 7961 to 11940

test 12092 hsf 7 1 to 12092

Both the IFE and EoC have initial solutions associated to empty
strings. Thus, there are no active dividers in the initial IFE solu-
tion, and no classifiers associated to the initial EoC. The deviation
D is set empirically to D = 5%. The RRT is a deterministic al-
gorithm, hence a single run is performed with both processes. All
RRT experiments were performed on a Athlon64 3000+ processor
with 1GB of RAM memory.

Solutions are compared as follows. The baseline representation
is compared directly with solutions SI and SE obtained with the
RRT algorithm. Moga solutions are observations with 30 samples.
Thus, we calculate the confidence interval lower and upper values
with α = 0.05 (95% of confidence) for MOGA solutions. One
solution is said comparable to a MOGA solution only if its error
rate is within the confidence interval. Otherwise, the solution may
be better if it is bellow the confidence interval, and worse if it is
above.

5. RESULTS
Handwritten digits results are detailed in Table 3, where Z is the

solution zone number, |S| is the solution cardinality (either feature
number or classifier number), etesta and etestb are classification
error rates on testa and testb. Solutions SIM and SEM are the
best results obtained with MOGAs in 30 replications, whereas SIM

and SEM are average values for the 30 replications. The baseline
representation is included for comparison purposes.

Table 3: Digits optimization results – confidence interval lower
and upper values in parenthesis for average values.

Solution Z |S| etesta etestb

Baseline 6 132 2.96% 6.83%
(2.18%) (5.47%)

SIM 15 330 2.18% 5.47%
(2.18%) (5.47%)

SIM 15 330 2.18% 5.47%
SI 15 330 2.18% 5.47%

(2.00%) (5.14%)
SEM – 24.67 2.02% 5.19%

(2.06%) (5.22%)
SEM – 23 1.96% 5.06%
SE – 23 2.05% 5.20%

Solutions SI and SE obtained with the RRT algorithm outper-
form the baseline representation defined by the human expert. Fig-
ure 6.a details the zoning strategy associated to SI and SIM . Com-
paring solutions SI and SE to solutions obtained with the same
approach with an MOGA, we conclude that the RRT had a similar
performance. Solution SI obtained by the RRT has the same zon-
ing strategy as SIM (the same on 30 replications), and the error rate
for SE is comparable to SEM (error rate is within the confidence
interval).

(a) (b) (c)

Figure 6: Zoning strategies for handwritten digits (a) and up-
percase letters – MOGA (b) and RRT (c).

The same experiments are performed with uppercase letters, a
more complex problem, and results are detailed in Table 4. Zon-
ing strategies for SIM and SI in Table 4 are presented in Figs.
6.b and 6.c respectively. The RRT algorithm outperforms again
the human based approach, confirming the approach to optimize
classification systems. Comparing the IFE and EoC solutions per-
formance, we observe that solutions are similar, and no significant
out performance is verified – solution SEM in Table 4 is an outlier.
Solution cardinality is smaller when using MOGAs, owing to the
multi-objective approach used that emphasized both accuracy and
smaller cardinality.

Whereas performance results indicate a tie between the RRT and
MOGA approaches, the computational cost is significantly smaller
when using the RRT. Table 5 details the solutions evaluated to solve
each problem with both algorithm types. To optimize solution
SIM , the MOGA was actually modified to memorize solutions,
so that they were evaluated only once. This was faster than train-
ing the PD classifier for the same representation multiple times –
each representation required about 30 minutes on a Beowulf clus-
ter. Solution SEM was optimized with a traditional MOGA, as the
solution evaluation procedure was very fast.
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Table 4: Letters optimization results – confidence interval
lower and upper values in parenthesis for average values.

Solution Z |S| etest

Baseline 6 132 9.20%
(7.19%)

SIM 16 352 7.19%
(7.19%)

SIM 16 352 7.19%
SI 25 550 7.14%

(6.33%)
SEM – 14.41 6.43%

(6.54%)
SEM – 12 6.22%
SE – 29 6.53%

Table 5: Solutions evaluated through the IFE and EoC opti-
mization process.

Result Digits Letters
SIM 450 623
SI 76 100

SEM 166000 166000
SE 13580 33067

6. DISCUSSION
The RRT algorithm produced solutions comparable to traditional

MOGAs when optimizing classification systems in two different
problems. The computational burden was significantly lower when
using the RRT algorithm. The higher burden is explained by the
global approach used by the MOGA to optimize solutions. Thus,
the RRT is more appropriate to optimize classification systems when
processing time is a concern.

The discussed semi-automatic approach to optimize classifica-
tion systems outperformed the human based approach. The zoning
strategy was adapted to both optimization problems using the same
feature set on each zone. The different zoning strategies found also
justifies the claim that classification systems have to be adapted to
the problem domain.

Solutions obtained with the RRT algorithm were also over-fitted
to the optimization data set. The global validation strategy detailed
in [10] selected better results in S than simply selecting the record
solution r obtained at the end of the optimization process. This
reinforces the conclusion in [10] that the optimization of classifica-
tion systems using wrapped classifiers is prone to solution over-fit.

The higher computational burden associated to MOGAS made
it infeasible to optimize classification systems with more discrim-
inant classifiers, such as MLP or SVM classifiers. Such classifiers
take more time than the PD classifier to train with large data sets.
Thus, a future research direction is to optimize classification sys-
tems using a wrapped MLP classifier with the RRT algorithm.
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