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Abstract: Multidisciplinary aeroservoelastic interactions are studied by the combination of knowledge acquired in two main disciplines:
aeroelasticity and servocontrols. In aeroelasticity, the doublet lattice method is used to calculate the unsteady aerodynamic forces for a
range of reduced frequencies and Mach numbers on a business aircraft in the subsonic flight regime by use of NASTRAN software. For
aeroservoelasticity studies, there is the need to conceive methods for these unsteady aerodynamic forces conversions from frequency into
Laplace domain. A new method different from classical methods is presented, in which Chebyshev polynomials theories and their
orthogonality properties are applied. In this paper, a comparison between flutter results expressed in terms of flutter speeds and frequencies
obtained with our method with flutter results obtained with classical Padé and least squares methods is presented for a business aircraft
at one Mach number and a range of reduced frequencies. It has been found that results obtained with our method are better in terms of
average error than results obtained with the two classical methods here presented.
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Introduction

Unsteady aerodynamic forces for a range of reduced frequencies
and Mach numbers are usually calculated in the subsonic regime
by use of the doublet lattice method �DLM� implemented in
aeroelastic analyses software such as NASTRAN �Rodden et al.
1979�, ADAM �Noll et al. 1986�, STARS �Gupta 1997�, and
FAMUSS �Pitt 1992�. For aeroservoelasticity studies, these un-
steady aerodynamic forces calculated in the frequency domain
should be converted into Laplace domain. In this paper, a new
method is applied for this type of conversion.
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The following classical methods: least squares �LS�, matrix
Padé, and minimum state �MS�, are the best known methods for
the conversion of the unsteady aerodynamic forces from fre-
quency into Laplace domain �Karpel 1982�. All the above-
mentioned aeroservoelastic software �except FAMUSS� mainly
use these methods or their extended versions �Dunn 1980� such as
extended LS, extended MP, and extended MS. Several unsteady
aerodynamic forces approximations by use of the MS methods for
several fixed Mach numbers were conceived �Poirion 1996�. Four
different order reduction methods were applied �Cotoi and Botez
2002� for the last term of the LS approximation. The value of the
error obtained with the best chosen method among these four
methods was found to be 12–40 times smaller than the value of
the error obtained with the MS classical method. The disadvan-
tage of this method was its computing time, which is higher than
the computing time taken by the MS method for these approxi-
mations. Therefore, the computing time of flutter frequencies and
speeds was higher too. Smith showed that the P - transform and
the FAMUSS methods generate state space system approxima-
tions directly �Smith et al. 2004�. For the calculations of unsteady
aerodynamic forces approximations for any range of reduced fre-
quencies, a new method was used by a combination of fuzzy
clustering with shape-preserving techniques �Hiliuta et al. 2005�.
A new method called mixed state, which combined the analytical
expressions given by the LS and the MS methods, was presented
�Biskri et al. 2005�.

A new method based on the Chebyshev polynomials and their
orthogonality properties is described in this paper and this new
method was applied to a business aircraft model with 44 symmet-
ric modes and 50 antisymmetric modes, the same model as that
treated by Biskri et al. �2005�. Results obtained by use of this new
method were found to be better than results obtained with the

classical Padé or LS methods.
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Equations of Motion of an Aircraft

The classical equations of motion of an aircraft are expressed as
follows:

M�̈ + C�̇ + K� + qQ�k,M�� = P�t� �1�

which is written as function of generalized coordinates �. Struc-
tural matrices are the generalized mass, damping, and stiffness
matrices. In Eq. �1�, q=�V2 /2�dynamic pressure with � as the
air density and V as the true airspeed; P�t��external force due to
gusts, turbulence, or pilot inputs on aircraft control surfaces; and
k=�b /V�reduced frequency, where ��oscillations frequency
and b�wing semichord length.

For aeroservoelastic interactions studies, there is the need to
obtain the aerodynamic forces in the Laplace domain. Therefore,
Eq. �1� will be converted in the Laplace domain

�Ms2 + Cs + K���s� + qQ�s���s� = 0 �2�

A new method used to convert the aerodynamic forces
Q�k ,M� from frequency into Laplace domain Q�s� is described in
this paper. The method uses the Chebyshev polynomials and their
orthogonality property �Weisstein 2004�.

Aerodynamic Forces Calculations by Use of the
Chebyshev Method

For aeroelasticity studies, the unsteady generalized aerodynamic
forces Q�i , j� are calculated by the DLM in NASTRAN, where
i , j=1,2 , . . . ,50 for the CL-604 antisymmetric 50 modes and
i , j=1,2 , . . . ,44 for the CL-604 symmetric 44 modes. These
forces are calculated on a CL-604 for one Mach number and a set
of reduced frequencies.

Predefined Chebyshev functions, such as chebpade and cheby-
shev, defined in MATLAB allow the construction of a polynomial
interpolation for the unsteady generalized aerodynamic forces
from frequency to Laplace domain.

The chebyshev function is used for the unsteady aerodynamic
force matrix approximations under the following power series
form:

Qij�s� =
1

2
c0

�ij� + �
n=1

�

cn
�ij�Tn

�ij��s� �3�

where coefficients of this approximation are

cn
�ij� =

2

�
�

−1

1 Qij�s�Tn
�ij��s�

��1 − s2�
ds

for n=0,1 , . . . .
The chebpade function is used for the unsteady aerodynamic

force matrix approximations under the following rational frac-
tions form:

Qij�s� =

�
n=0

P+2

an
�ij�Tn

�ij��s�

1 + �
n=1

P

bn
�ij�Tn

�ij��s�

�4�

where the numerator degree is greater than the denominator de-
gree by a factor of 2. Thus, the order of the Chebyshev polyno-
mials can be written under the form �P+2, P� and this order will

be varied in the Results section in order to see the differences
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appearing between results obtained for different orders of Cheby-
shev polynomials.

Flutter Analyses

In order to demonstrate the flutter analysis theory used in this
paper, we define the following ratios: the air density ratio �,
which is the ratio between the air density at a certain altitude �
and the air density at the sea level �0:

� =
�

�0
�5�

Eq. �1� is used for flutter analysis where the aerodynamic un-
steady forces matrix Q is complex and therefore Q has a real part
QR and an imaginary part QI. The aerodynamic stiffness QR is in
phase with the vibration displacement and therefore is associated
with �. The aerodynamic damping QI is in phase with the vibra-
tion velocity, and therefore is associated with �̇. Thus, Eq. �1�
may be written as follows:

M�̈ + �C +
1

�
qQI	�̇ + �K + qQR�� = 0 �6�

From the reduced frequency k definition, � is written as a
function of k

� = kV/b �7�

We replace � given by Eq. �7� and q=�V2 /2 already expressed
in the second section in Eq. �6�, so that next equation is obtained

M�̈ + �C +
1

2k
�VbQI	�̇ + �K +

1

2k
�VbQR	� = 0 �8�

From the dynamic pressure definition, we write

�V2 = �0VE
2 �9�

The equivalent airspeed VE is written as function of air density
ratio �

VE = ��V �10�

Terms on both sides of Eq. �9� are divided by V, and by use of Eq.
�10� we obtain

�V = �0

VE
2

V
= �0VE

VE

V
= �0VE

�� �11�

Eq. �8� is further written as a function of the equivalent airspeed
VE by use of Eqs. �9�–�11�

M�̈ + �C +
1

2k
�0b��VEQI	�̇ + �K +

1

2
�0VE

2QR	� = 0 �12�

Results

A comparison is presented in this paper between the results ob-
tained by use of our Chebyshev approximation method with the
results obtained by two classical approximation methods such as
the LS and Padé methods. Regarding these two classical methods,
the LS method is very well known in aeroservoelastic interactions
studies and was already applied in aircraft industry, while the
Padé method uses a parameter identification solution in order to

determine a polynomial fractional form which identifies an or-
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thogonal polynomial interpolation. This fractional form is the key
aspect of the Padé method, due to the fact that it allows the order
reduction system.

These methods were applied for unsteady aerodynamic forces
approximations on a business aircraft modeled by finite-elements
methods with NASTRAN code at the Mach number M=0.88 and
at eight reduced frequencies k=0.001, 0.1, 0.3, 0.5, 0.7, 0.9, 1.1,
and 1.4 and for different polynomial approximation orders.

The polynomial approximation order in the Chebyshev method
such as �6, 4� represents the maximum rank of the Chebyshev
polynomials used to form the numerator and the denominator in
Eq. �4�. Thus, in Eq. �4�, an approximation order �6, 4� gives
P=4 where P+2�maximum rank of Chebyshev polynomials at
the numerator and P�maximum rank of Chebyshev polynomials
at the denominator. The approximation order for Padé polynomi-
als is defined in the same manner as the approximation order for
Chebyshev polynomials.

Different other values of the polynomial approximation order
by the Padé method and the Chebyshev polynomial fractions
method �polynomial order should be equivalent for both methods�
were used for the total normalized approximation error
calculations—which were found to be much smaller for the
Chebyshev polynomials method with respect to the overall ap-
proximation error given by Padé polynomials method. The ap-
proximation error for each element of the Q matrix is normalized
for the real and the imaginary part, at each reduced frequency by
use of

JQ real = �
k=1

14 � �
i=1

Nmodes � �
j=1

Nmodes 
Qij R new − Qij R old

�
Qij
2

		 � 100%

�13a�

Table 2. Flutter Errors J �%� for Business Aircraft with 50 Antisymmetr

F#2
Mode 9

F#3
Mode 10

Method JVE JFreq JVE JFreq

pk-LS 8 lags 0.55 0.16 1.00 1.21

pk-LS 10 lags 0.67 0 1.67 1.32

pk-Chebyshev 1.50 0.32 0.09 0

Table 1. Total Normalized Errors

Mode type Approximation order
J
P

Symmetric modes �6, 4� 8.

�7, 5� 12

�8, 6� 50

�9, 7� 1

�10, 8� 58

Antisymmetric modes �6, 4� 15

�7, 5�

�8, 6�

�9, 7�

�10, 8�
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JQ imaginary = �
k=1

14 � �
i=1

Nmodes � �
j=1

Nmodes 
Qij I new − Qij I old

�
Qij
2

		 � 100%

�13b�

and

JQ = JQ real + JQ imaginary

where QR old and QI old are the real and the imaginary parts of the
unsteady aerodynamic forces given by NASTRAN and QR new

and QI new�real and the imaginary parts of the unsteady aerody-
namic forces approximated by Padé or Chebyshev theories.
Nmodes�total number of modes �also the dimension of Q�;
k�index of the reduced frequency; and J�total normalized error.
In Table 1 we compare the numerical values of these errors ob-
tained for five different approximation orders: �6, 4�, �7, 5�, �8, 6�,
�9, 7�, and �10, 8�. In Table 1, the abbreviation n.o. means that no
results were obtained due to the fact that the approximation re-
quires more than 1 Gbyte of memory, which is more memory than
MATLAB 6.5 can handle. As shown in Table 1, the Chebyshev
method gives a smaller error than the Padé method. In most of the
cases, the normalized error given by Chebyshev method can be up
to 100 times smaller than the error given by the Padé approxima-
tion method. In other cases, use of the Padé method is not effi-
cient because of the amount of memory requested, which is too
high for MATLAB 6.5 use. The second type of results comparison
is given in terms of numerical values for flutter equivalent air-
speeds �EAS� and frequencies � and their errors JEAS and J�,
which are expressed by the following:

JEAS =

EASpk_std − EASpk_approx


EASpk_std
� 100% �14a�

des

F#5
Mode 17

F#7
Mode 66

JVE JFreq JVE JFreq

Average error
J

4.87 0.37 1.03 0.34 1.19

6.50 0.46 2.34 0.18 1.64

0.29 0.09 0.19 0 0.31

JQ imag

Padé
JQ real

Chebyshev
JQ imag

Chebyshev

9.4265 0.1637 0.1544

139.7621 0.0354 0.0132

96.2094 0.0354 0.0132

1.1595 0.0354 0.0132

65.7236 0.0354 0.0132

15.2306 0.3040 0.3024

n.o. 0.0397 0.0192

n.o. 0.0397 0.0192

n.o. 0.0397 0.0192

n.o. 0.0397 0.0192
ic Mo
Q real

adé

35821

3.9417

.9315

.8054

.9544

.6480

n.o.

n.o.

n.o.

n.o.
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J� =

�pk_std − �pk_approx


�pk_std
� 100% �14b�

where, in equation �14a�, EASpk_std and �pk_std�equivalent air-
speeds and frequencies calculated by the pk standard method
presented earlier, whereas EASpk_approx and �pk_approx�equivalent
airspeeds and frequencies calculated with the pk_approximation
method, which is one of the two methods: pk-LS method �with
eight and ten lag terms� and pk-Chebyshev method. The total
average error is expressed by

J =

�
i=1

Nflutter

�JEAS�i� + J��i��

2Nflutter
�15�

where Nflutter�number of flutter points detected. For the business
aircraft here presented, a number of four flutter points were de-
tected, and the corresponding modes to these flutter points are
given in Tables 2 and 3. In Tables 2 and 3, the flutter errors J �see
Eqs. �14� and �15�� are presented in percentage values for the
flutter equivalent airspeeds and frequencies for business aircraft
with a number of 50 antisymmetric modes �Table 2� and for 44
symmetric modes �Table 3�. From Tables 2 and 3, the average
error was found to be very much smaller in the case of
pk-Chebyshev method application than in case of pk-LS method
application, which demonstrates the superiority of the Cheyshev
method with respect to the pk-LS method.

Conclusions

Generally, an approximation method is considered to be better
than another method if its approximation error is smaller and if its
computation time is faster; and, ultimately, if less computer re-
sources are used, which could be in some cases a crucial criterion
�when a significantly larger quantity of data to be approximated is
used�. The case of the CL-604 from Bombardier proves to be in
fact one of these cases, due to software limitations: The Padé
approximation failed when we tried to use it for the 50 elastic
antisymmetric mode case for model orders higher than �6, 4� be-
cause this approximation would require more than 1 Gbyte of
memory, which is more than MATLAB 6.5 can handle.

Regarding the computation time, the Chebyshev method
proved to be four times faster than Padé, depending on the num-
ber of modes and the model order used. The Chebyshev method,
when compared with Padé, provided much smaller approximation
errors, as shown in Table 1. A remarkable aspect regarding the
Chebyshev method is that, using it on the CL-604’s data, the total
normalized approximation error obtained with this method rapidly
converged �with the increase of the model order� to a constant
very small value for both symmetric and antisymmetric mode

Table 3. Flutter Errors J �%� for Business Aircraft with 44 Symmetric M

F#1
Mode 7

F#4
Mode 15

Method JVeas JFreq JVeas JFreq

pk-LS 8 lags 4.70 0.84 0.47 0.42

pk-LS 10 lags 4.23 0.42 5.92 1.53

pk-Chebyshev 0.20 0.14 0.21 0
cases, whereas the same approximation error provided by the
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Padé method was higher and presented large fluctuations. Due to
this type of error, the Padé approximation was not able to provide
all flutter points for the CL-604 when used in conjunction with
the pk method, whereas the Chebyshev method provided these
values with high accuracy. This is the reason why, to compare the
flutter results of the Chebyshev method, we made appeal at the
pk-LS method, a much slower, but accurate approximation
method, based on Padé decomposition. However, even when
compared to LS, the Chebyshev method, which proved to be up to
30 times faster than LS, provided smaller flutter average errors,
no matter the number of lag terms that we have implemented
when using the LS. Previous results obtained with the Chebyshev
approximation method on the Aircraft Test Model data from
STARS and the F/A-18 aircraft data kindly provided to us by
NASA Dryden Flight Research Center and the above-presented
results for the CL-604 aircraft data from Bombardier make us
conclude that this approximation method is not problem depen-
dent and that it is a fast, reliable, and very accurate method.
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Notation

The following symbols are used in this technical note:
C � modal damping matrix;
c � wing chord length;

K � modal elastic stiffness matrix;
k � reduced frequency;

M � modal inertia or mass matrix;
M � Mach number;
Q � modal generalized aerodynamic force matrix;
QI � imaginary part of modal generalized aerodynamic force

matrix;
QR � real part of modal generalized aerodynamic force

matrix;
q � dynamic pressure;
T � Chebyshev polynomial;
V � true airspeed;

VE � equivalent airspeed;
V0 � reference true airspeed;
� � generalized coordinates;
	 � airspeed ratio;
� � true air density;

�0 � reference air density; and

F#6
Mode 19

F#8
Mode 41

JVeas JFreq JVeas JFreq

Average error
J

0.48 0.07 0.38 0.07 0.93

0.06 0.15 0.24 0 1.57

0.05 0 0.08 0.04 0.09
odes
� � oscillations frequency.
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