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A study is presented of the dynamics of an articulated system of cylinders in confined axial
flow. The articulated system is composed of rigid cylindrical segments, interconnected by
rotational springs; it is cantilevered, hanging vertically in the centre of a cylindrical pipe,
with fluid flowing downwards in the narrow annular passage. For sufficiently high flow
velocity, the system gencrally loses stability sequentially by divergence (pitchfork
bifurcation) and flutter (Hopf bifurcation). Once this occurs, the articulated system
interacts with the outer pipe, which acts as a constraint to free motions. In the present
study, which is mainly concerned with possible chaotic motions in this system, the
analytical model is highly simplified. Thus, motions are considered to be planar, and the
equations of the articulated system are taken to be linear, other than the terms associated
with interaction with the outer pipe, which is modelled by either a trilinear or a cubic
spring. A linear eigenvalue analysis is first undertaken, and then the nonlinear behaviour
of the constrained model is explored numerically for systems of two and three
articulations. Phase-plane plots, power spectral densities and bifurcation diagrams indicate
in some cases a clear period-doubling cascade leading to chaos, while in others chaos arises
via the quasiperiodic route. Poincaré maps and Lyapunov exponent calculations confirm
the existence of chaos. Some analytical work is also presented, involving centre manifold
theory, in which the post-Hopf limit-cycle amplitude is calculated and compared with that
obtained numerically.

1. INTRODUCTION

EARLY INTEREST IN THE DYNAMICS of cylindrical structures in axial flow was related to (i)
the small-amplitude turbulence-induced vibrations of fuel elements in nuclear reactors
{Paidoussis 1966a; Reavis 1969; Gorman 1971) and (ii) the stability of the towed,
sausage-like Dracone containers utilized for the transport of oil and fresh water by sea
(Hawthorne 1961). Definitive studies of the stability of such systems, by means of
linear theory, were undertaken by Paidoussis (1966b,c, 1968, 1973) and Dowling
(1988a,b).

The dynamical behaviour of systems with both ends supported and cantilevered ones
terminated by a streamlined end is similar: augmented, flow-induced damping at low
flow velocities, and flow-induced instabilities at sufficiently high flows. Typically,
stability is lost by divergence, and then at higher flow velocity by flurter: coupled-mode
flutter in the case of cylinders with both ends supported and single-mode (Hopf) flutter
in the case of cantilevered ones (Paidoussis 1966b,c, 1973). It is of interest that the

+ An earlier version of this paper has been presented at the Third ASME//ISME[/CSME [IMechE[IAHR
International Symposium on Flow-Induced Vibration and Noise, Anaheim, CA, November 1992,

0889-9746/93 /070719 + 32 $08.00 © 1993 Academic Press Limited



720 M. P. PAIDOUSSIS AND R. M. BOTEZ

post-divergence flutter predicted by linear theory does in fact occur (Paidoussis 1966¢)
and is in good agreement with theoretical predictions. The behaviour of towed systems
is considerably more complex, and rigid-body-type fiow-induced instabilities are also
possible (Paidoussis 1968; Dowling, 1988a,b).

Interest in articulated cylindrical systems in axial flow is a little more recent: (i) in
conjunction with the dynamics of fuel “strings” or “stringers” of certain types of
nuclear reactors (Paidoussis 1976), and (ii) underwater systems towed by a submarine
(Hamy 1971; Paidoussis 1968, 1986). The fuel strings in question consist of fuel bundles
held together by a central support tube; the string is mounted vertically within a
pressure tube, and is held at the bottom end and free on top, with the flow upwards.
The theoretical study by Paidoussis (1976) is of special interest here, since the physical
system is quite similar to that considered in this paper, and hence so are the equations
of motion—although in the case of the fuel string they are considerably more complex.
Also of interest to the present study is the work on so-called “pendular oscillations™ of
articulated systems modelling nuclear reactor reactivity-monitoring or -control systems,
¢.g. by Hennig er al. (1980) and Peterka (1991), where the cylindrical elements are
hung in the form of simple or compound pendula within a tube and are cooled by
annular flow.

The present paper deals with the dynamics of a system of the type shown in Figure
1(a): an articulated system of cylinders interconnected by rotational springs, within a
pipe containing flowing fiuid. The annular space between the articulated system and the
pipe is sufficiently narrow for impact to occur once motions become amplified, thus
superimposing a strongly nonlinear element on the fluid-structure interaction problem.
The dynamical behaviour of the system is studied with particular emphasis on chaotic
dynamics; to this end, a number of idealizations are made to facilitate analysis, as will
be explained in what follows.

Dch

(a) Ly

Figure 1. (a) Diagram of the articulated cylindrical system in confining channel, subjected to a mean
annular flow velocity, U; (b) definition diagram for the generalized coerdinates ¢, j=1,..., N, showing the

cylinder lengths, /;, and interconnecting springs of stiffnesses k.
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2. MATHEMATICAL FORMULATION
2.1. THE PHYSICAL SYSTEM AND ASSUMPTIONS MADE

The articulated system here under consideration consists of a number of rigid cylinders
interconnected by rotational springs, with the lowest cylinder being terminated by a
more or less streamlined, ogival end. The system is hung vertically in the centre of a
pipe [Figure 1(a)], and is supported at the upper end and free at the lower one. Fluid
flows downward in the relatively narrow annular space.

To simplify the analytical model and thus to be able to carry out the analysis into the
chaotic dynamics of the system easily, a number of assumptions are made at the outset,
as follows: (i} motions of the articulated system are considered to be planar; (ii} the
dynamics of the systern when no impact occurs with the confining pipe are described by
a linearized set of equations; (iii) impacting with the pipe is modelled by a trilinear or a
cubic spring, presumed to exist between the pipe and the element of the articulated
system contacting it. Assumption (i) is strictly simplifying: since the system under
consideration does not model any particular physical system, it may be considered to
be so constructed that motions are indeed planar. Assumption (ii} is justified by the
narrowness of the annular gap [despite the diagrammatic spaciousness of Figure 1(a)];
thus, motions can only be of small amplitude, as constrained by the pipe. The presence
of the pipe becomes ““felt” by the system-—quite apart from the effects on the
fluid/flow-induced forces—via the impact-related forces. A trilinear model for such
impact is quite reasonable! there is no spring (zero stiffness) while the system oscillates
without touching the wall; but once it does, then further movement is resisted by a very
large stiffness associated with locatl deformation of the articulated system and of the
constraining pipe wall. The cubic spring is a further idealization of the situation (ct.
Paidoussis & Moon 1988; Paidoussis e al. 1992), introduced strictly for analytical
convenience.

Another assumption made implicitly is that, despite the articulations and the
rotational springs (which are presumed not to protrude into the fluid flow), there is no
local separation of the flow as the articulated system oscillates, by virtue of the small
angles of deflection involved. For the same reason, slender-body theory will be
presumed to be applicable for the determination of the inviscid fluid forces.

Concerning the fluid forces, they could, in principle, be determined by an
appropriate solution of the Navier—S8tokes equations. This will not be attempted here,
and the fluid forces will be determined essentially by superposition: inviscid and viscous
forces will be determined separately, This has been shown to be quite acceptable
(Paidoussis 1966b,c, 1973) for the continuously flexible counterpart of the present
problem, as well as for more complex systems (Paidoussis 1979). The equations of
motion will be obtained by application of Lagrange’s equations, for a system with an
arbitrary number of articulations, N, although the calculations to be presented will be
confined to N =2 and N =3, The generalized coordinates chosen are the angles ¢;, as
shown in Figure 1(b).

2.2. THE STRUCTURAL MODEL

In this section, the kinetic and potential energies of the structure, i.e. of the articulated
system itself, are determined. Small displacements have been assumed, so that
sin ¢, = ¢; and cos ¢, == 1.

The local coordinate, £, is defined, along the length of each cylinder segment,
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0= ¢ =1; then, for small deflections, the velocity at point § of the jth cylinder is
}71 . .
U= 2 loby + £y (1
a=

where ¢, =0 has been introduced for convenience and the dot denotes differentiation
with respect to time, t. Hence, the kinetic energy of the jth cylinder is

=3 [ (S o 4] e @

where m; is the mass per unit length and the subscript s stands for “structural”. The
total kinetic energy of the structure, neglecting the ogival part of the last cylinder, is

2
2}':1

The potential energy is composed of a gravity component and a component due to
strain of the intercylinder connecting springs. Again, for small displacements, it may
easily be found to be

j !'m,.(:}:; Lb, + fqﬁj)z] de. (3)

0

i—1
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2.3. Tue FLuip-DynaMic Forces

As has already been mentioned, the fluid forces will be determined in several parts:
inviscid unsteady forces, hydrostatic forces and viscous forces. They will generally be
expressed as generalized forces for introduction into Lagrange’s equations.

An element 8x of one of the cylinders is shown in Figure 2, in which F, represents
the inviscid forces, F,. and F,, are the components of the hydrostatic pressure force,

A Fpedix
42
mﬁyﬁx Fpye
Fréx
mg&x
(Fp+ Fy)Ox

Figure 2. Forces acting on an element 8x of one of the rigid cylinders of the articulated system.
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and Fy and F; are the normal and tongitudinal viscous hydrodynamic forces, all per
unit Jength.

2.3.1. The inviscid hydrodynamic forces

Using the system of coordinates with i and j unit vectors (Figure 1) and Lighthill’s
{1960) slender-body theory, the normal flow velocity at any point of a flexible cylinder
is

v(£) = Ui+ [(dy/at) + U(ay/ox)]j. (5)
Hence, for the jth (rigid) cylinder in the articulated system this leads to

Iﬁl - . -
v(§)=Ui+ (Z L, + &b, + Uq&j)J. (6)
g=1
Therefore, the total kinetic energy of fluid, 7}, is

15 4 il . 2

s 2 (M2 o+ 6,4 va)) +man]), ™
j=1 o g=1

where M, = ypA; is the virtual or added mass of the jth cylinder subjected to

transverse motions in the confined annular space, and M; is the equivalent quantity for

axial motions. The added mass coefficient, y, for axisymmetrically confined flow, is

found by potential flow theory to be

x =[(1+hy¥+1)/[(1+R)Y?-1], (8)

where £ =D, /D, D being the diameter of the articulated cylinders, and D, = D, — D
is the hydraulic diameter; D,, is the internal diameter of the external pipe [Figure 1(a)].

If both ends of the articulated system were supported, expression (7) would
represent the whole of the inviscid component of the fluid-dynamic forces. However,
the cantilevered system is generally nonconservative, and hence there will generally be
work done at the free end of the system by a nonconservative inviscid force, F,. (cf.
Benjamin 1961; Paidoussis 1966b). This force is associated with the non-cylindrical,
ogival end of the last cylinder. For a less-than-ideally streamlined shape, this force (or
force deficit, if one likes) arises because (i) the lateral flow will not be truly
two-dimensional and (ii) boundary layer effects; for a flexible cylinder (Paidoussis
1966b), F,. = (1 f)MU[(dy/3t) + U(dy/ax)], in which f is a measure of departure
from ideal slender-body flow theory: for an ideally streamlined end, f—1. This
expression is adapted to the system at hand to give

o= (1= PMU( S 1+ Ub). ©)

2.3.2. The hydrostatic pressure forces, F,. and F,,

The static pressure distribution, p(x), in the relatively narrow channel flow is
determined by the hydrostatic pressure distribution, modified by the skin-friction-
related pressure drop; since the latter is approximately linear, p(x) is taken to be
linear. The forces F,. and F,, acting on an element, 8¢, of one of the cylinders (Figure
2) are determined by considering this element frozen and immersed in fluid on all sides.
Therefore, the resultant of the forces on the cylindrical surface of the jth cylinder (in
terms of F,, and F,,} is equal to the total hydrostatic force on the element, which is the
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buoyancy force, minus the forces pA acting on the cut, circular faces of the element;
ie.,

d(pA) (p ) .

d
P A sEi- ( —Sieos i == sin qb,l) 5x,  (10)

—F 88+ F,, 8j= — i

where A &£ is the elemental volume. Since, for the inclined cylinder, 2£/dx = cos ¢,,
the forces on the element 8£ of the jth cylinder are

(Fx)i =0, (Fy),= tan b (11)

These results could have been obtained directly from adaptation of the equivalent
results for a flexible cylinder (Paidoussis, 1973). F,, =0, F,, = (a/dx)[pA(dy/dx)].
From the latter, however, it is seen that there is also a change-of-angle (curvature
term), which arises at the joints of the articulated cylinders. This gives rise to a
contribution in the generalized force

(Q,); = —(dp/dx)All; sin(d: — ¢,)
for the jth cylinder.

Moreover, by assuming that lateral movement of the cylinder has negligible effect on
the axial pressure distribution, one may write

A(%) ( DUZCD)+pgA (12)

where D, =D, — D is the hydraulic diameter and C; is the frictional coefficient.
Hence, for small displacements (tan ¢, = ¢;) one obtains

D
(), = (= 400U+ pga )y, (13)
[

2.3.3. Viscous hydrodynamic forces Fy and F,

The viscous forces acting on long inclined cylinders have been discussed by Taylor
(1952). One can write these forces as follows:

= 1pDU*(Cy, sin® 8 + C; sin ), F = 3pDUC; cos 8, (14)

where 8 =tan '[(dy/dx)} + tan '[(dy/at)/U]. For small dy/dx and (dy)/at)/U these
equations reduce to

dy  dy dy
Fy=1pD ( —+—)+1D =,  F.=3pDUC, 15
N = 2P UCf Uﬁx 3t 2P Cdat L= 2P £ (15)

where the second term in Fy represents a linearization of the quadratic viscous force at
zero flow velocity, 3pDC,, |dy/dt| (dy/ét), in which the drag coefficient represents
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C; = Cuy(dy/at). For a point in the jth cylinder these expressions may be written in the
form

(Fa); = %pDUCf( 20 L, +Ed+ U(bj) + %pDCd( 20 I,b,+ gqf;,.) ,
- o (16)
(F[_’)}'= %pDUch.

One could have used the more sophisticated but complex theory of Mateescu &
Paidoussis (1987) to obtain more accurate expressions for the unsteady components of
(Fv); and (F.)—but, as shown by Paidoussis ef al. (1990}, the two sets of expressions
give very similar results insofar as stability of the continuously flexible version of this
system is concerned. Hence, the added complexity of that theory is not warranted for
the purposes of this paper.

3. THE EQUATIONS OF SMALL MOTIONS

3.1. KiNETiC AND POTENTIAL ENERGIES AND (GENERALIZED FORCES OF THE SYSTEM
The total kinetic energy of the system, T, is given by
T=T+1, (17)

where T and Trare given by equations (3) and (7), respectively. The potential energy is
exclusively associated with the articulated system, and so it is given by equation (4).
The generalized forces (actually moments) Q,, j=1,2,..., N, may be determined
by considering the virtual work, 8W,, associated with virtual displacements, 8¢;, in the
generalized coordinates ¢;. Then the generalized force, O, is defined via 8W, = Q; 8¢;.
We proceed to determine the component of the generalized force Q,, associated with
cylinder 1 and denoted by Q,,. The corresponding virtual work, W, ,, is given by

I 1
Wy, = j (Fon& 5y dE + f (E )€ 5, cos ¢, dE, (18)

from which @, , = éW, /8¢ .

Similarly, the virtual work associated with the forces acting on the second cylinder,
8W,;, due to a virtual displacement associated with the generalized coordinate ¢, is
given by

I l'z
SWia= = | 0(Faly 56y cos(a— d)de + [ (Bl 5, cos by d
0 {0

[
+ | (FL)oly 8¢y sin{p, — ) dé — (dp/dx),AsL1L 8¢, sin(¢o — 1),
(19)

and so on for 8W,,, k=3,...,N—1, from which the Q, , may be determined. The
virtual work associated with the last cylinder, W, , will have the additional terms

WDUPC 8y sin(py — @) — Fl, 8¢, cos(dby — @), (20

where C, is the base drag coefficient, and F,. has been discussed in Section 2.3.1. The
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total generalized force is simply given by
N
g, = 2 Ql.j-
=1

Proceeding in this manner and linearizing, the generalized force associated with the
generalized coordinate ¢; is

0= - [ wagaes [ Geae+ 3 (- [ wogae+ [ @

+ [ Eii- 0 de - @plan Akl (e~ 4
+3pD*UCol(dn — &) — Fol;, (21)

where (Fy); and (F.);, (F,,);, F. are given by linearized versions of equations (16), (13)
and (9), respectively, for small amplitudes ¢, (such that sin ¢; = ¢,, cos ¢; = 1), and the
change-of-angle (curvature) term of Section 2.3.2 has also been included.

3.2. DERIVATION OF THE LINEARIZED EQUATIONS OF MOTION

Equations (3), (4), (7) and (21) are substituted into Lagrange’s equations,

g(aT)iai’r v
3;

to =0, = 27
dt i, I, Q, Jj=12,...,N, (22)

for a system of N articulations, yielding N linear equations of the form

ﬁ(‘f‘l;---;ﬁaw;(ﬁl,---;QSN;Q"],--,¢N):U, =12,..., N (23)

The equations obtained up to this point are valid, only provided that motions are
sufficiently small for impact with the outer pipe not to occur; the nonlinear forces
generated by impact will be introduced later (Section 5).

We next consider a “uniform™ system, where all the articulations have the same mass
per unit length (m; =m, j=1,..., N) and physical dimensions {A4;= A, D;= D, etc,,
j=1,...,N), including length /;=/, j=1,..., N—1, except for the last articulation,
which is /, long (see next paragraph). Similarly, the stiffnesses of all intercylinder
springs are equal, k; =k, j=1,..., N.

The equations of motion may now be rendered non-dimensional with the aid of the
dimensionless parameters

B =pAl(pA tm), y=(mpALNlk, u=(pALN/Kk)"U,
g=LiD, Iy=el, c¢=(4/7)CMLNIK}'?, ¢ =4/n)Cy, (24)
Cb:(4/ﬂ-)Cb, thth, f:[(pA_i_m)L:iN/k]ﬁ[ﬂt,

where L = NI, and k is taken to be k = EIfl, EI being the flexural rigidity of a fictitious,
continuously flexible system to which the present system would converge as N— o
(Paidoussis & Deksnis 1970). In a study of convergence of an articulated system of
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pipes conveying fluid (discrete N) to the equivalent continuously flexible one (N = «)
as N is increased, it was found (Paidoussis & Deksnis 1970} that optimum convergence
is achieved with the length of the last articulation Iy = el, e = }; this value is arbitrarily
adopted here also.

The equations of motion have been obtained for a system of N articulations;
however, the results to be discussed in this paper are confined to N =2 and N =3. The
nondimensional equations for a two-degree-of-freedom system (N =2) are the
following;

[1+ (x — DBIG +e)d, + 1e*do] + bBe + Decu VB, + §(3¢ + 1)ec VB,
+x(1 - HUNVBé, + tecre®uV B, + tecVBe s,
1+2e

+x(2—f)uNe\/Ed32—xu2N2¢1+N“d>1+Nv $1— N (P2~ &)

+4(1+ k™) (2e + 1)u’Necyd, + 3u°Ncy(d1 — ¢2) + 2 (1 — N>, =0, (25)
[1+(x — DBz, + e’ d2] + %"—’2\/5“3‘3}'€61 + %ezﬁgcél _ZuN‘-’f\/Ed:":

+3e*VBusc,d, + ke’VBech, + x(1 — fHuNe*VBd, + N (b; — ¢1)

+ 3Ny, + ke’ (1 + h u’Necyd, — yu’Niefe, =0,

where the dots now denote differentiation with respect to . [It is noted that the
definition of # in equations (24) is the inverse of what it is in some previous work (e.g.,
Paidoussis 1973); hence, the terms 1 +#~' here correspond to 1+ 4 therein. The
present definition is physically more meaningful: a small A represents a narrow
annulus.)

The anaiysis that immediately follows, in Sections 4, 5 and 6, is exclusively confined
to the two-degree-of-freedom (N =2} version of the system. The three-degree-of-
freedom system is considered in Section 7, where the equivalent of equations (25) for
N =3 are also given.

4. STABILITY ANALYSIS OF THE LINEARIZED SYSTEM (N =2)

Before considering the full problem, involving impact of the articulated system with the
outer channel, it is important to understand the small-amplitude dynamical behaviour,
where such impact does not occur. This is provided by an eigenvalue analysis of the
linearized equations (25). The dimensionless equations of motion are rewritten in
matrix form,

[MK¢}+ [CK} + KN} =[0]; (26)
solutions are then sought of the form
{¢}={e} explin), (27)

and they are obtained by transforming equation (26} into a first-order system and then
solving it as a standard eigenvalue problem. The eigenvalues A; =iw; of the system,
which are generally complex, permit the assessment of stability for each set of system
parameters.

Critical values of a parameter, ini our case the flow velocity &, are needed in order to
determine where the eigenvalues of the linearized system contain a purely imaginary
pair (Hopf bifurcation) or a single zero value (pitchfork bifurcation).

The dynamical behaviour of the system of two articulations is investigated for the
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following set of parameters:
£ =10, e=05  f=08, B =04, v =10, gcy = 025, ¢y =01
(28)
We choose two cases,

Case I; wider annulus: h =405 forwhich ¢=038(C=0-30);

(29)

Case 2, narrower annulus:  h=10-2, for which ¢=0-79 (C =0-62).

Figure 3 (h = 0-5) and Figure 4 {h = 0-2) show, in the form of Argand diagrams, the
real and imaginary parts of the eigenvalues of the system, Re(w ) and $m(w) for (a) the
first and (b) the second mode of the system, as functions of the flow velocity.

As the flow velocity is increased in Figure 3, both the real and imaginary components
of the first-mode eigenvalue approach zero; this corresponds to a divergence instability
(pitchfork bifurcation), which occurs at & = 1-695. As u is increased further, the real
part of the eigenvalues again becomes negative, so that the system is restabilized, at

6.—
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; ®
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Figure 3. Argand diagrams for (a) the first mode and (b) the second mode of the system of Case 1
(h = 0-5), as defined by (29) and for system parameters (28). The imaginary part of the eigenvalue, $m(A), is
plotted versus the real part, ®Re(4), with the nondimensional flow velocity, 4, as parameter.
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Figure 4. Argand diagrams for (a) the first and (b) the second mode of the system of Case 2 (4 = 0-2), as
defined by {29) and (28); Fa{A) is plotted versus @Re(A), with the dimensionless flow velocity, u, as
parameter.

u = 2-53. Furthermore, at u = 2-74, in the second mode, purely imaginary eigenvalues
arise, which corresponds to a flutter instability (Hopf bifurcation). As u is increased
beyond 2-74, the real part becomes positive and this corresponds to a linearly unstable
system (amplified oscillations).

For the lower value of 4 (Figure 4), the real and imaginary parts of the first-mode
eigenvalue vanish for u = 1-16; this value of u corresponds to the pitchfork bifurcation.
The system is restabilized between u# =171 and wu =1-95. Then, flutter (Hopf
bifurcation) occurs at u =195 in the first mode. In the second mode, the real part of
the eigenvalues is always negative; so, from the linear stability point of view, only the
first-mode behaviour is of interest.

From the results presented here, it can be seen that, for the larger gap (A =0-5),
larger critical flow velocities are obtained than for the smaller gap (k =0-2): u =1-695
and 2:74 versus u =1-16 and 1-95. This trend can further be verified by studying the
behaviour of the system in unconfined flow; in that case, much higher critical fiow
velocities than those for confined flow are obtained.
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5. NONLINEAR BEHAVIOUR, IMPACTING WITH THE CHANNEL WALL:
NUMERICAL RESULTS N=2

5.1. TRILINEAR AND Cusic SPRING DESCRIPTION

Following the onset of flutter instability, the amplitude of oscillation will grow,
resulting in impacting with the outer cylinder. The interaction with the outer cylinder is
approximately trilinear, as shown in Figure 5. For contact at the second articulation
(lower end of the first cylinder)f and denoting the displacement at that point by
n =1, ¢, and the contact stiffness by k,, the force exerted by the trilinear spring may be
expressed as

E("]) = kr{n - %“T’ + ngl - |7’ - ngl}};

where 7, is defined in Figure 5. Recalling that in the equations of motion we are
dealing with moments and angles, rather than forces and displacements, the nondimen-
sional term associated with the trilinear spring that should be added to the first of
equations (25) is

M, = Kr{¢’1 - %H(b\ + ¢g| — | — ¢g|]}; (30)

where ¢, = n,/l, (with [, =, see Section 3.2), «, = (k,/k)L’N?, and k is the rotational
stiffness at one of the articulations (see Sections 2.2 and 3.2).

For analytical convenience, an alternative, cubic-spring approximation may be
utilized instead to model impacting with the outer cylinder. The force-displacement
relationship in this case is

F(n) =k.n’,
and the nondimensional term that must be added to the first of equations (25) is

where «, = (k. /k)L*
Solutions of the equations of motion, with either (30) or (31) included, were

A

Force

Displacement

Figure 5. Force-displacement curves for the realistic trilinear-spring model (- - -} for impacting of the
articulated system on the confining channel, and the cubic-spring ideatization (—).

t This, in fact, was later confirmed to represent the ‘natural’ actual motion.
* Yy p
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obtained by using a fourth-order Runge-Kutta integration algorithm, with a dimen-
sionless time-step of A7 = 0-01. The same two cases as in the linear analysis have been
studied, Cases 1 and 2 of (29).

5.2. BIFURCATION AND PHASE-PLANE-DIAGRAMS

Graphing a typical property of the solution, e.g. the maximum displacement, ¢,y as a
function of u, we construct the bifurcation diagram. To clarify its meaning, phase-plane

portraits are also presented. In the results to be shown, ¢ .. corresponds to the
maximum value of ¢ ().

Figure 6 shows the bifurcation diagram with the trilinear spring representation for
Case 1 of (29), i.e. for A =0-5 and «, = 80, and Figure 7 the bifurcation diagram with
012
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Figure 6. Bifurcation diagrams for the system with the wider annulus, A = 0-5 [as defined by (28} and (29}]
and &, = 80, showing ¢, versus u, obtained with the trilinear-spring model for impacting with the channel.
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Figure 7. Bifurcation diagram for the same system as in Figure 6 (k =0-5), but with the cubic-spring
model (k. =3 % 10°) for impacting with the channel,
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the cubic-spring representation (x, = 5 X 10%) for the same case. The range of u shown
covers the behaviour beyond the Hopf bifurcation. It is seen that, qualitatively, the
dynamical behaviour in the two cases is similar, and attention will henceforth be
diverted to the more idealized system involving the cubic spring. The reason for this is
that direct comparison with analytical work to be presented in Section 6 then becomes
possible, because representation (31) is an analytical function, whereas (30) is not.
Thus, concentrating on the cubic spring representation with . = 5 X 10°, Figures 7-10
show bifurcation diagrams and phase-plane portraits for the first cylinder in the system,
for flow velocities above the critical velocity for flutter.

The route to chaos for the bifurcation diagram of Figure 7 (Case 1, h =0-5) is
clarified via the phase-plane portraits of Figure 8. For # =2-74, there exists a stable,
symmetric limit cycle that develops after the Hopf bifurcation (not shown). The
symmetry of the limit cycle is lost by a symmetry-breaking pitchfork bifurcation at
i =2795, the first bifurcation shown in Figure 7— where the two branches are
obtained with different-sign initial conditions. At higher u, a cascade of period-
doubling bifurcations occurs, and Figure 8(a, b} shows period-2 and period-4 motions,
Figure 8(c) shows chaotic motion for u = 2-8295, corresponding to the first dense cloud
of points in the bifurcation diagram. Figure 8(d) shows a periodic (akin to period-5)
motion for u =2-831, corresponding to the sparse patch (periodic window) in the
bifurcation diagram. At higher u, the motion becomes strongly chaotic again.

The period-doubling bifurcations have been pin-pointed to occur at u =2-8195
(period-2), u =2-8234 (period-4), u =2-8243 (period-8) etc., where the interval in u

0'6_1—-—r]-- T 17T § T " FrTrrr7 1 “_ 0'6 T
; @ | 3
04f . 04
5 0-2:- . 02
2 ] [
2 a0k ] 0.0
g 1o
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= 02} 1 02
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_0.6“..-!...I-.-I...I-x:l.--l...‘ 0.6
0-6 prr—r—r—r 06 p——r——— —r—g —————r—y
0'4‘ 0,4,_ (d)_t
o2} E 3
- 0-27 1
g % 00-
§ 02k ]
* —02L ]
04 1
06} 1 o4t ]
_0.3,.._.|-...n._._..|.,_._._4 _O.r...l....l.L..l..,:
010 005 000 0-05 0-10 —%-10 —0-05 000 0.05 010

Displacement, ¢,

Figure 8. Phase-plane plots of ¢, versus ¢, at {a) u =2-8225, (b) u =2-8240, (¢} u =28295 and {d)
it = 2-8310, for the system of Figure 7.
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between bifurcations becomes progressively smaller. From these values, the Feigen-
baum number, Fei; = (t;+1 — u;)/(4;12 — 4;,,), may be computed, giving Fei=4-33,
which is reasonably close to the “ideal” Fei = 4-6692 (Moon 1987).

For the narrower annulus (Case 2, £ =0-2), the dynamical behaviour is broadly
similar, but quite different in detail, as seen in the bifurcation diagram (Figure 9) and
phase-plane diagrams (Figure 10). The symmetry-breaking pitchfork bifurcation occurs
at u=2-023 (Figure 9). This is followed by a “period-bubbling” event, where a
period-doubling bifurcation occurs but is then reversed to period-1 motion, in the
interval 2-0395 <y < 2-0495; period-2 and period-1 phase-plane portraits shown in
Figure 10{a,b) for « =2-045 and 2-050, respectively. At u =2-05225 (Figure 9) the
motion becomes quasiperiodic-2, but, if the calculation is carried out for sufficient
nondimensional time steps (=100}, it develops into chaotic motion. This occurs in the
neighbourhood of u =2:052; for larger u the transition to chaos is much faster. A
typical chaotic phase portrait is shown in Figure 10(c) for u = 2-0535. Thus, this system
follows the quasiperiodic route to chaos. Chaos persists to u =2-058, with a
quasiperiodic window at u = 2-0568 [Figure 10(d)], which looks like period-3 motion
(see Section 5.3).

5.3. Power SpECTRA AND TIME TRACES

The results obtained could be verified by constructing time traces and the correspond-
ing power spectra for the displacement of the first cylinder. They are important,
especially for the quasiperiodic motion.

Case 1 of (29), for A =0-5, involving a cascade of period-doubling bifurcations, is
quite similar to that studied by Paidoussis & Moon (1988) and Paidoussis et al. (1991},
for instance, for a similar problem. The chaotic character of the motion at u = 2-8295 is
self-evident in Figure 11(a), in both the PSD and the time trace. The motion depicted
in Figure 11(b) for u = 2-831 is periodic, with the dominant dimensionless frequency of
f =12-245, modulated mainly by its fifth subharmonic of f = 0-449; this gives rise to the
period-5-like phase portrait of Figure 8(d). The second peak in the PSD corresponds
to f =% X 2:245 and, indeed, Figure 8(d) could be considered as a “modified” form of
period-3 motion also!

Finally, Figure 11(c) depicts quasiperiodic-2 motion, for Case 2 of (29) and
u =2-0568, where the power spectrum was obtained from a 100 time-step trace. The
two dominant frequencies are f; = 0-:377 5748 and f, = 1-150 704, so that all other peaks
in the PSD may be confirmed to correspond to f = nf; £ mf;, with n and m integers; for
example, the third peak in the FFT is 2f, — f;, while the fourth is 2f + f;. Thus, despite
Figure 10(d) looking like period-3 motion, it represents more complex behaviour. The
ratio fi/f;, usually referred to as the winding (or rotation) number, is
W =0-328 125 = 21/64, a rational number, as found by the continued fraction method
by using Mathematica software. (Whether f/f; is truly rational and equal to 21/64, and
hence the Poincaré map would have a finite number of points, depends on the accuracy
of determination of f; and £, as given above.)

5.4. PoINCARE Maps AND Lyarunov EXPONENTS

The Poincaré map gives a qualitative picture of the type of dynamical behaviour that
occurs. Thus, when the solution is periodic (period-1), the phase-plane portrait is a
limit cycle and the Poincaré map, which is a section through the limit cycle, is but a
single point; when the dynamics is chaotic, the Poincaré map becomes more complex,
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Figure 11. Time traces of ¢,(r) and power spectra (dB) plotted in dimensionless time, 7, and the
corresponding dimensionless frequency, for {a, b) the system of Figure 7 (# = 0-5, u = 2-8295 and 2-8310) and
(c) the system of Figure 9 (h = 0-2, u =2-0568); (a), (b} and (c) show, respectively, chactic, subharmonically

modualted periodic and quasiperiodic motions.

but nevertheless should retain some definite structure, in contrast to that for a random
process.

A plot of the largest Lyapunov exponent, o, versus a parameter (here u) gives a
quantitative assessment of the dynamical state: if o <0, this means the system will
eventually return to a stable fixed point, i.e. the system is stable; if & =0 the motion is
associated with a periodic or quasiperiodic solution, i.e. to a limit cycle; if o >0, the
motion is chaotic. For the techniques and definitions involved the reader is referred to
any book on chaos, ¢.g. by Moon (1987); see also Benettin et al. (1980).

The Poincaré maps have been obtained by plotting ¢, versus ¢, when ¢, =0.
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Figure 12(a), for Case 1 and u =2-84, shows a typical Poincaré map in the chaotic
regime. A very definite structure is seen to exist, the map showing some similarity (in
this cross-sectional form) to a Mdbius strip (cf. Paidoussis et al. 1992). Figure 12(b), for
Case 2 and u =2-052525, close to the onset of chaos, corresponds to quasiperiodic-2
motion that eventually becomes chaotic. In Figure 12(b) we see the closed curves
characteristic of quasiperiodic motion, but with the beginnings of chaotic perturbations
off the curves clearly visible.

The largest Lyapunov exponents shown in Figure 13 display basically similar
behaviour for (a) £ =0-5 (Case 1) and (b) A = 0-2 (Case 2): beyond a certain threshold
(cf. Figures 7 and 9), the motion is chaotic and remains so (¢ >>0), apart from one
region of periodic [Figure 13(a)] and quasiperiodic [Figure 13(b)} motion (o = 0).
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Figure 13. The largest Lyapunov exponent versus u for the (a) k =0-5 and (b) 4 = 0-2 systems [defined by
(28) and (29) and . =5 % 10°].
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6. ANALYTICAL RESULTS: CENTRE MANIFOLD THEORY

Centre manifold theory is a method which uses power series expansions in the
neighbourhood of an equilibrium point in order to reduce the dimension of a system of
ordinary differential equations, thereby helping to understand the dynamical behaviour
of an otherwise complex system.

At a degenerate point, which has at least some eigenvalues with zero real part, the
space in which the system dynamics evolve can be divided into three subspaces: the
stable, unstable and centre eigenspaces, spanned by the eigenvectors whose eigenvalues
have negative, positive and zero real parts. At this degenerate point, there exist three
invariant subspaces similarly called stable, unstable and centre manifolds, tangent to
the corresponding linear counterparts at the fixed point. Since the stability properties
of the dynamical system along the stable and unstable manifolds are known, the system
dynamics in the vicinity of the degenerate point is completely determined by the flow
restricted on the centre manifold.

6.1. ComputaTioN OF THE UNFOLDING PARAMETERS
Our system of equations is written in the following form:

¥=Aly, B, vy + el(y), (32)

where y = {d;, ¢z, 1, d.}". The coefficients in the nonlinear function f(y), which in
our case is due to the cubic spring, are evaluated at critical values.

Considering u in an ¢ neighbourhood of u, as © =, + gu, by assuming that the
eigenvalues of A have the general form A, =0, +iw,; and A; ;= o, + iw,, One can
construct a modal matrix P enabling the system equations to be brought into the
standard form

x = Ax + e P 'f(Px), (33)
where
a, —w, 0 0

W, [0 0 0

x=P'y, A=P'AP= (34)

0 0y W3

6.1.1. Hopf bifurcation

Al u = i, the first pair of eigenvalues becomes purely imaginary, A, = iw,, @y>0,
while A; 4= —a +ib, a >0, b > 0. For ¢ sufficiently small, both &, and w, in (34) can be
expanded in terms of &:

o, =0+ e, + O(e9), @, = w,+ epa + O(e9), (35)
o= —a+eu, + 0(e?), wy = b+ ep,+ O(e%)
The coefficients u;, i =1, 2, 3, 4, are the unfolding parameters, and they represent the
effect of the deviation of the control parameter u from the critical value.
Let A = o, £ iw, be the first pair of eigenvalues of A, so that
det[A ~ (o Liw )] = R0y, w, u) + ili{o,, w, u)=0; (36)

then we obtain for u = u, + £ the following equations:

R](E.LL],(U()"'E[L;;, uf‘i‘Eﬂ):O, ]1(£’.L1,(l)()+€}1.3, MC+E’.L)=0. (37)
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Expanding R, and 7, in terms of £, and noting that R,(0, w,, u.) and L0, wg, 1.} =0,
resuits in

where all derivatives are evaluated at the critical values.

As a special case, we took the case h =0-5 and u =u, = 2-7396, i.e. the velocity for
which we obtained the first limit cycle, which corresponds to a Hopf bifurcation.
Following the above calculation procedure, we obtained wu,=31-0465p and
= —19-3943 4.

6.1.2. Pitchfork bifurcation

For a single zero eigenvalue, we let A = o, be the eigenvalue when u = u, + egp, and
A =0 at 4 = u. = 1-6946; we thus have

det(A — o,I) = Ry(a,, ) =0. (39)

For & small, letting o,=¢&u, al « =1-6946 + g1, by expanding and evaluating
Ri(o5, u) we obtain

R JR
epa— (0, u) + e — (0, 1) = 0, (40)
(90'2 c?u

from which g, = —4-9194.

6.2, CenTrRE MANIFOLD CALCULATIONS

6.2.1. Hopf bifurcation

For the critical flow velocity u, = 2-7396, the eigenvalues are A, = £9-0176/ (hence,
o, =0, o, =9-0176) and A;,= —4-4646 + 5-2242; (hence, o, = —4-4646, w, = 5-2242).
The second of equations (34) may therefore be written as

0 -90176 0 0
9-01 0 0
A= 7 0 . (41)
0 0 —4-4646 —5-2242
0 0 52242 —4-4646

The system of equations (33) can be reduced to a two-dimensional system by centre
manifold theory, involving the ‘“‘centre space” of (41), i.e. the part associated with the
purely imaginary eigenvalues; this leads to the reduced two-dimensional system

{xl} _ [ ey —(wot e#a)]{xl} e x) @

X; wot+ Epts Epky X2

By replacing wo = w; = 90176 and by substituting p; =31-0465u, p3=—19-3943u,
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as determined in Section 6.1.1, equation (42} gives

{xl} [ 31-0465 =9-0176 + 19-3943

]{xl} +{f(x,, x2)}, (43)

Xa 90176 — 19-3943 31-0465p X3

where

{ 0-1968x3 — 1-2342x3x, + 2-5775x,x3 — 1-7943x3 } ()

_ fl} _
i, x)} = { ~ 10-9246x3 — 5:7989x%x, + 12:1102x,x% — 8-4301x3

f2

Either the method of normal forms or the method of averaging may be used to solve
these equations. We shall use the latter and, accordingly, let

X, =rcos8, x,=rsin 4. (45)
Then, after substituting into (44) and applying the method, the averaged equations
F=e(w, +ar’)+ 0(&Y), 0 = wo+ gt + ebr? + O(e?) (46)
are obtained, where
a=[fiiz+ 3130+ 30+ foul/8 (47)
The terms f;, are the coefficients of f(i=1,2) in equation (44), in which jk is
associated with x{x4 (Guckenheimer & Holmes 1983); for example, f, ,, = 2-5775.
In the case under consideration, it is found that a = —3-4902, i.e. a <0, signifying

that the Hopf bifurcation is supercritical {Guckenheimer & Holmes 1983). Limit-cycle
motions are obtained when 7 = 0, or from (46)

r’=—p,/a=88954u. (48)
It is seen that a real limit-cycle amplitude, r, exists only for p =u —u. >0, For u <0,

the origin (undeformed equilibrium} is stable, and a limit cycle does not exist.
The phase plot in Figure 14(a) is for « =2-73<u,, where u,=2-7396, ie. for

F (a) (b

2

§(0
I R PR e NS EEE R FEETE L
—0-06 —0-04 -0-02 0-00 0-02 -0-06

Displacement

PR . T L)
-0-04 002 0-00 0.02

Figure 14. Analytical, centre-manifold representations of system behaviour (h = (-5, k. =5 x 10°): (a) just
before and (b} after the Hopf bifurcation.
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A, centre manifold.

p = —0-0096 <0, where the origin is stable. If # =2-74>u,, then u =0-0004 >0 and
the origin becomes unstable; we then obtain a limit cycle, as seen on the phase plot in
Figure 14(b).

We have also compared the maximum amplitude of the system as a function of u, as
obtained by (i} the centre manifold approximation and (ii) the Runge-Kutta numerical
integration. Agreement between the two is very good for g << 0:02, as can bhe seen in
Figure 15; in terms of order of magnitude, it is quite acceptable up to p =0-08. This
gives a taste for the power of the centre manifold method, on the one hand, and gives
confidence to the veracity of the numerical results, on the other.

6.2.2. Pitchfork bifurcation

For the same system, but for u,=1-6946, the threshold flow velocity for pitchfork
bifurcation, the matrix A is found to be

—1-8371 -21-5414 0O 0
21-5414  —1-8371 O 0
= 49
0 0 0 0 (49)
0 0 0 -2411

Application of centre manifold theory in this case (see Section 6.1.2) reduces the full
system into a one-dimensional sub-system,

¥ = poxs — 11-5757x3 = —(4-919ux, + 11-5757x), (50)

where g, = —4-919u, obtained in Section 6.1.2, has been utilized.
For u =16 <u.=1-6946 (i.e., for p <0), the origin is stable, as can be seen in the
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phase plot in Figure 16(a); but for p >0, e.g. 4 =1-7, the origin becomes unstable, as

can be seen in Figure 16(b), where the trajectory ends at one of the new fixed points.

7. RESULTS FOR THREE-DEGREE-OF-FREEDOM SYSTEM

To avoid confusion, all the results for the three-degree-of-freedom system (N = 3) are
presented in this section, paralleling the work for N =2 presented in Sections 4 and 5.
The dimensionless equations of small motions in this case are as follows:

L+ - DB E+e), + G+ e)ba+=da | + xuNVBS,
2

+ 3€6+ 4 chu\/Ed}l + et ecVBd, + 2e+1 ecuVBd, + 2xuNVEd,
2e+1 , e’ . . e’ , .
+ ECVE¢2+ZSCfu\/E¢3 +2XHN€\/E¢’3+ZEC\/E¢3“XUNJC\/E¢1
. , 342
— Y1N*fibs = xfuNVB e, — xfeuN VB — yuPNb, — b3) + 2N*b, + Ny =—— ¢,
-1 Ins2 2572
- N4¢2 + (1 +h 4)(28 * 3) HZNECf¢1 +“L%Cb¢)1 - %beb:g = 0, (51)
.. . 2. +2 .
1+ 6= D8I+ )+ (+ bt S|+ L e VBd,
1:26 36'\/3‘?51 + IECfu\/E‘f;2+3e 155\/1@(52_1’”1\'7\/54’1
+ (1= f)xuNVBd, + x(2 - leuNVBd, + sec;e’u VB, + secVBe d; — yu N>,
-1 2as2
+2N'¢, + Ny L2 ¢2— N, + i)+ (L+h 3(28 1) uzNECfd’z + uN Py
2ps2

cops + x(1 - flu’N'¢;=0, (52)
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. . . e’ N ,
[T+ - 1)3][%32¢1 + %equz + %334’3] + Zfﬂfu\/ﬁ(ﬁz + zecvﬁ‘f’z
*IuNef\/Eff’z + éC’BECfu\/E‘isa + %€3£C\/E‘$3 +x(1 _f)uNez\/Eﬂsa
2 N 1 .
+ N4(¢3 - ¢2) - xuzNzefqbg, + % (h—] + 1)u2N€Cf¢3 + Tyezd); + E ECfequE¢1

+36cVBE $ 1 — xefuNVB, =0. (33)

The same two cases are considered here as in the foregoing, with parameters as given
by relations (28) and (29), but N =3: Case 1 (A =0-5, ¢ =0-38) and Case 2 (h =0-2,
¢ =0-79), the first corresponding to the wider annulus and the second to the narrower
one. For convenience of presentation of the results, Case 2 is discussed first.

7.1. THE NARROWER ANNULUS SYsTEM (h=0-2, ¢ =0-79, N=3)

The dynamics of the linearized system of equations (51)-(53) is considered first, i.e. the
dynamics for small-amplitude motions without impact with the outer channel.

The complex eigenvalues of the system are presented in Figure 17 in the form of
Argand diagrams, as functions of the dimensionless flow velocity, w.

As u is increased, it is seen in Figure 17(a) that the first mode undergoes a pitchfork
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Figure 17. Argand diagrams for the three-degree-of-freedom system (N = 3), for {a) first mode, (b) second
mode, (c) third mode of the system of Case 2 {7 =0-2). The imaginary part of the cigenvalue, #m{A), is
plotted versus the real part, (1), with the nondimensional flow velocity, u, as parameter.
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bifurcation (divergence) at u=1-1733. As u is increased further, the system is
restabilized in this mode at u = 1-9544,

For u =2-287, purely imaginary eigenvalues arise in the second mode [Figure 17(b}],
signalling a Hopf bifurcation (flutter). This dynamical state persists up to u = 2-6568, at
which point the system regains stability and remains stable in that mode thereafter.
Then, for u =2-6989, the system undergoes a second pitchfork bifurcation [u =2-7 in
Figure 17(a)], and remains unstable in that mode to at least u = 5. At a slightly higher
flow velocity (u =2-995), the system loses stability in its third-mode also, by another
Hopf bifurcation, as seen in Figure 17(c). Thus, for u =2-995 and up to at least u =5
the system is subject concurrently to divergence in its first mode and flutter in its third.

Next, the dynamics of the system with impacting is considered, modelled with the
idealized cubic-spring representation of equation (31) and «. =35 X 10°,

Figure 18 gives the bifurcation diagram in the range 2-25 < u <2-85; Figure 18(b)
represents a blow-up of 18(a) for the higher values of & The “maximum
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displacement” corresponds to that of the first cylinder, ¢ m... Phase-plane plots and
related information to clarify the behaviour depicted in the bifurcation diagram are
presented in Figures 18 and 19.

The evolution of the limit-cycle amplitude beyond the first Hopf bifurcation is clearly
seen on the left-hand side of Figure 18(a). For 2-60 < u < 2-66 approximately, three
values of amplitude are shown, corresponding to local maxima of ¢,y as clarified by
the inset phase-plane diagram: by taking a line close to ¢ =0, three local maxima (two
positive and one negative) are counted for ¢, as well as three local minima.

At u=2-6568 the origin regains its stability and is a simple fixed point, up to
u =270, the threshold of the second divergence (pitchfork bifurcation), as best seen in
Figure 18(b). The two branches of the pitchfork were determined via opposite-sign
initial conditions. Thus, for u > 2-7, the origin is no longer a stable fixed point, but new
stable fixed points (S.F.P.) on either side are generated.

The stability of these new fixed points was investigated by linearizing the system in
their vicinity. As seen in Figure 19(a), as u is increased (to u = 2-7225) the cigenvalues
become purely imaginary, at the extreme right of the figure, signifying the onset of
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another Hopf bifurcation and the development of limit-cycle motions (L..C.) for higher
u, the onset of which is marked by the kink in the curves in Figure 18(b). This is
further clarified by the phase-plane plots of Figure 19(b,c). For u = 2-7225 the fixed
point is still stable and the trajectory of Figure 19(b) approaches that point with time.
For u =2-725, however, which is beyond the Hopf bifurcation, a limit cycle develops,
as seen in Figure 19(c). The limit cycle is symmetric about the fixed point which gave it
birth, but asymmetric vis-d-vis the origin; only the upper (maximum) branch of the
limit cycle is shown in the bifurcation diagram of Figure 18(b) for each of the two limit
cycles—arising from one or the other of the two fixed points.

For u>276, a cascade of period-doubling bifurcations is seen in Figure 18(b),
leading to chaos. Period-2, period-4 and period-8 motions are displayed in the
corresponding phase portraits of Figure 20(b, c, d), respectively. The thresholds for
period-2 to period-16 motion were pin-pointed as follows: 4 = 2:765, 2-7769, 2-782 and
2-7831, from which a Feigenbaum number based on the last three is Fei = 464, close to
the “ideal”.

Figure 20(e), for u =2-835, shows chaotic motion. The corresponding Poincaré map
displays an interesting “nebula” shape; it was obtained by plotting ¢, versus ¢, when
¢, =0.

As discussed in conjunction with the eigenvalue analysis, interesting dynamical
behaviour was expected to arise for u >2-995, when the system should be subject
concurrently to (i) flutter associated with the third mode (via a Hopf bifurcation of the
origin) and (ii) flutter associated with the first mode [via Hopf bifurcations of the new
stable points emanating from the second pitchfork bifurcation shown in Figure 18(b}].
Unfortunately, no convergent solutions could be obtained for u >2-84 approximately;
this was confirmed not to be a fault of the solution algorithm. The most likely cause is
that the amplitudes of motion become too large, while the basic analytical model is for
small amplitude motions.

7.2. THE WIDER ANNULUS SYSTEM (£ =05, ¢ =0-38, N =3)

The qualitative lincar dynamics of small-amplitude motions is broadly the same as for
the narrower annulus: a succession of divergence and flutter instabilities. In the
interests of brevity, these results will not be presented. Instead, what is quite different,
namely the route to chaos, will be focussed upon.

Figure 21 summarizes the results for (a) u=4-0885, (b) u=4-0900, and (c)
u =4-0965: in the first column [panels {(a,), (b,), (¢,}] are the phase-plane portraits, in
the middle column the corresponding Poincaré maps, and in the last column the
corresponding power spectra.

The nature of the dynamical states depicted in Figure 21 may best be assessed by the
power spectra. In Figure 21(a,;), two fundamental frequencies are found: f; = 0-934 4006
and f; = 6:612 681, from which all other frequency peaks may be constructed, occurring
at nfy £ mf;, where n and m arc integers. Thus, these peaks occur at f, =nf; for
n=23,....9 fho=3h+f, =4 th f=12f, fis=6f+F, fu=14, fis=2f,
fe =15, fi =9/ + f5, fis=10f, + . Whether the ratio f,/f, is rational or irrational
depends on the accuracy of the determination of the frequencies f; and f£. If one
presumes that the values given here are absolutely precise, then, by the continued
fraction technique and Mathematica, one finds a rational ratio f/f=
0-1413044 = 13/92. On the other hand, the ‘“‘closed” nature of the curves depicted in
the Poincaré map of Figure 21(a,) suggests that this ratio may be irrational after all.
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The important point is that the motion, as it involves two fundamental frequencies, is
quasiperiodic-two.

The power spectrum for Figure 21(b,) is found to involve three fundamental
frequencics, f; = 0-8625236, £, =3f, and f = ¥f;; hence the motion is quasiperiodic-
three in this case. All other frequencies may be constructed by #f, £ mf, £ pfs, with n,
m, and p being integers. Thus, for example, A =2f, i=fi+ L, k=f*+ S5 F=2(+F,

f=fith+f =2+ +fs =3 tf+fs, fi=12f, — f;, and so on. In this case,
the ratios of the fundamental frequencies are definitely rational (3 and %), which is
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supported by the relatively small number of points associated with the Poincaré map of
Figure 21(h,). In this connection, it ought to be remarked that the precise number of
points in the Poincaré map depends on the section one takes. Figure 21(b,), with nine
points, was obtained by plotting ¢, versus ¢, when ¢, = 0-1; if the condition is altered
to ¢, =0-12, for example, then cone obtains 16 points.

The system for u = 4-0965 is clearly chaotic, as evidenced by the phase portrait of
Figure 21{c,} and the power spectrum of Figure 21{c;). In the latter, although the
principal frequencies (twin peak} and their harmonics are still very prominent, the
subharmonic content is fundamentally flat.

The route to chaos may be explained by means of the Ruelle-Takens—Newhouse
theory (Ruelle & Takens 1971; Bergé et al. 1984), the overall process involving three
successive Hopf bifurcations. The first leads from an initial steady static state (fixed
point, dimension zero) to a periodic one (limit cycle, dimension one). The second
transforms the periodic regime into a quasiperiodic-two regime [Figure 21(a)]. The
third gives a transition to quasiperiodic-three motions [Figure 21{b)], which finally
gives rise to chaos [Figure 21{c)].

8. CONCLUSIONS

In this paper, two- and three-degree-of-freedom articulated cylindrical systems subject
to axisymmetrically confined axial flow have been considered. Motions of the system
are assumed to be planar and the impacting of the cylindrical system with the external
flow-confining cylindrical channel is modelled by a nonlinear trilinear or cubic spring;
most of the calculations in this paper have been conducted with the cubic spring
representation. The calculations presented, in the interests of brevity, are for two
systems: Case 1 for a wider annulus {(h = 0-5) and Case 2 for a narrower one (h =0-2)
with either two or three articulations (or number of cylinders) in the system, N =2 or
N =3, which display different kinds of dynamical behaviour. It is shown, for the first
time, that such a system can develop chaotic oscillations.

The first part of the nonlinear study, which generally follows an eigenvalue analysis
of the linearized system, is numerical. The existence of chaotic vibrations, through
impacting with the channel, has been proven and illustrated by the use of phase-plane
portraits, bifurcation diagrams and power spectra, and through the construction of
Poincaré maps and the computation of the Lyapunov exponents of the system.

For Case 1 (h =0-5) with N =2, the route to chaos is via the classical cascade of
period-doubling bifurcations, which occurs after a symmetry-breaking pitchfork bifur-
cation. Once it occurs, chaos persists over a wide range of flow velocities, interspersed
by periodic windows. This being a very well documented dynamical behaviour, no
more will be said about it,

Case 1 with N =3 is fundamentally different. The route to chaos in this case is via
the quasiperiodic route, following the classical Ruelle—Takens—Newhouse process:
from period-1 to quasiperiodic-two (two fundamental frequencies), to quasiperiodic-
three, and finally chaos.

Case 2 (h =0-2) with N =2 is also unusual. Firstly, after the pitchfork bifurcation,
the phenomenon of “period bubbling” takes place, where the forward period-doubling
cascade (to period-2 in this case) is immediately followed by the inverse cascade, back
to period-1. Secondly, chaos arises via the quasiperiodic route, involving only
quasiperiodic-two motion; the quasiperiodic-three state of the Ruelle-Takens—
Newhouse process has not been found—but this is not unusual (Bergé er al. 1984).
Finally, Case 2 with N =3 displays 2 number of unusual and interesting features, as
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described in Section 7. The route to chaos in this case is via a cascade of
period-doubling bifurcations, similar to that of Case 1 with N =2.

Certain features of the dynamical behaviour for N =2 and the narrow annulus are
similar to those for N =3 and the wider annulus; correspondingly, similarities were
found between the N =2 wide-annulus and the N =3 narrow-annulus systems. This is
fortuitous. The results for N =4, which have not been presented in this paper, are
much more similar to those of N =3 for both values of A (narrow and wide annulus),
showing the beginnings of convergence.t In fact, the dissimilarity in the results for
N=2 and N =3 is not surprising if one compares with the work of Paidoussis &
Deksnis (1970) for the analogous system involving an articulated system with internal
flow; in that case also, where calculations for each N from 2 to 8§ as well as for the
continuously flexible system were conducted, the dynamics for N =2 were particular,
but N =3 began to display generic behaviour, typical of higher values of M.

The second part of the nonlinear study is analytical, but is confined to N =2 in this
paper. Centre manifold theory is used, whereby the fourth-order system is reduced to
one of second order (for the Hopf bifurcation} or first order (for the pitchfork
bifurcation). The analytical results obtained fully support the numerical ones and
demonstrate the usefulness and power of centre manifold theory.

The work and especially the results presented in this paper represent a sample of a
larger set. In effect, the only parameter that was varied here, other than the flow
velocity and the number of articulations, was the narrowness of the annulus [4 and the
corresponding ¢ in relations (28) and (29)]; however, there are seven other system
parameters in (28). The purpose was to demonstrate that this system is capable of
displaying an extremely rich dynamical behaviour, and hence—especially as it
corresponds to an interesting and practically important physical system—that it is
deserving of further study.
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