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Abstract

In handwritten pattern recognition, the multiple classifier system has been shown to be useful for improving recognition rates. One of the
most important tasks in optimizing a multiple classifier system is to select a group of adequate classifiers, known as an Ensemble of Classifiers
(EoC), from a pool of classifiers. Static selection schemes select an EoC for all test patterns, and dynamic selection schemes select different
classifiers for different test patterns. Nevertheless, it has been shown that traditional dynamic selection performs no better than static selection.
We propose four new dynamic selection schemes which explore the properties of the oracle concept. Our results suggest that the proposed
schemes, using the majority voting rule for combining classifiers, perform better than the static selection method.
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1. Introduction

The purpose of handwritten pattern recognition systems is to
achieve the best possible recognition rate. In general, a number
of classifiers are tested in these systems, and the most appro-
priate one is chosen for the problem at hand. Different classi-
fiers usually make different errors on different samples, which
means that, by combining classifiers, we can put together an
ensemble that makes more accurate decisions [1-3]. In order
to have classifiers with different errors, it is advisable to cre-
ate diverse classifiers and group them into what is known as an
Ensemble of Classifiers (EoC). EoCs have been shown to be
useful in improving handwritten recognition.

One way to define the upper limit of EoC’s performance is
through the concept of oracle. If one classifier from an EoC can
correctly classify a given pattern, then this EoC is considered
to be able to classify this pattern in oracle. Intuitively, the more
diverse the EoC, the better the oracle. The objective of this
work is to use the nature of oracle, so we can only select those
classifiers which might be capable to correctly classify a given
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pattern. This is done through a dynamic fashion, since different
patterns might require different ensembles of classifiers. Thus,
we call our method a dynamic ensemble selection.

To understand better how we can explore the oracle to do a
dynamic ensemble selection, first we have to look at how these
classifiers are generated. There are several methods for cre-
ating diverse classifiers, among them Random Subspaces [4],
Bagging and Boosting [5-7]. The Random Subspaces method
creates various classifiers by using different subsets of fea-
tures to train them. Because problems are represented in dif-
ferent subspaces, different classifiers develop different borders
for the classification. Bagging generates diverse classifiers by
randomly selecting subsets of samples to train classifiers. Intu-
itively, we would expect classifiers trained by different sample
subsets to exhibit different behaviors. The basic Boosting [7]
also uses parts of samples to train classifiers, but not randomly;
difficult samples have a greater probability of being selected,
and easier samples have less chance of being used for training.
With this mechanism, most of the classifiers created will focus
on hard samples and can be more effective.

One of the most important issues surrounding EoC creation
is ensemble selection. The mechanism for doing this is de-
signed to select adequate classifiers from a pool of different
classifiers, so that the selected group of classifiers can achieve
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Fig. 1. Three different schemes for selection and combining classifiers: (a) static ensemble selection; (b) dynamic classifier selection; (c) proposed dynamic
ensemble selection. The solid line indicates a static process carried out only once for all patterns, and the dash lines indicate dynamic process repeated each

time for a different test pattern.

optimum recognition rates. We can perform this task either by
static selection, i.e. selecting an EoC for all test patterns, or
by dynamic selection, i.e. selecting different EoCs for different
test patterns.

The process of static ensemble selection can be further di-
vided into two steps: (a) find a pertinent objective function for
selecting the classifiers; and (b) use a pertinent search algo-
rithm to apply this criterion. Obviously, the choice of a per-
tinent objective function is one of the most crucial elements
in selecting pertinent classifiers [1,3,8]. It has been shown
that the simple majority voting error (MVE) is one of the
best objective functions for this purpose. While there is still
no one search algorithm that is universally regarded as bet-
ter than others, the Genetic Algorithm (GA) is considered to
have somewhat of an advantage because of its population-based
approach.

However, since different test patterns are, in general, asso-
ciated with different classification difficulties, it is reasonable
to assume that they might be better if they are fit to different
classifiers rather than to a single static EoC. This may give
us reason to believe that dynamic classifier selection is better
than static ensemble selection. The dynamic scheme explores
the use of different classifiers for different test patterns [9-15].
Based on the different features or different decision regions of
each test pattern, a classifier is selected and assigned to the
sample. Some popular methods are A Priori selection, A Poste-
riori selection, overall local accuracy and local class accuracy
[10-12,15], hereafter referred to as the A Priori, A Posteriori,
OLA and LCA methods respectively. In general, their perfor-
mances are compared with that of the oracle, which assigns the
correct class label to a pattern if at least one individual classifier
from an ensemble produces the correct class label for this pat-
tern. Against all expectations, however, it has been shown that

there is a large performance gap between dynamic classifier
selection and the oracle [10], and, moreover, dynamic classi-
fier selection does not necessarily give better performance than
static ensemble selection [12].

A critical point in dynamic classifier selection is that our
choice of one individual classifier over the rest will depend on
how much we trust the estimate of the generalization of the clas-
sifiers [14]. The advantage of dynamic ensemble selection is
that we distribute the risk of this over-generalization by choos-
ing a group of classifiers instead of one individual classifier for
a test pattern. So far, this scheme seems to work well.

We note that most dynamic classifier selection schemes use
the concept of classifier accuracy on a defined neighborhood
or region, such as the local accuracy A Priori or A Posteriori
methods [10]. These classifier accuracies are usually calculated
with the help of K-nearest neighbor classifiers (KNN), and its
use is aimed at making an optimal Bayesian decision. How-
ever, KNN could be still outperformed by some static ensemble
selection rule, such as the MVE. This poses a dilemma in the
estimation of these local accuracies, because their distribution
might be too complicated for a good result. Interestingly, dy-
namic classifier selection is regarded as an alternative to EoC
[10,11,15], and is supposed to select the best single classifier
instead of the best EoC for a given test pattern. The question
of whether or not to combine dynamic schemes and EoC in the
selection process is a debate being carried out [14]. But, in fact,
the two are not mutually exclusive. Hybrid methods have been
shown to be useful, in that they apply the methods for different
patterns [13,14]. However, we are interested in exploring an-
other type of approach here, because we believe that ensemble
selection can be dynamic as well. This means that, instead of
performing dynamic classifier selection, we will perform dy-
namic ensemble selection (Fig. 1).
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We also note that the oracle is usually regarded as a possible
upper bound for EoC performances. As far as we know, no ef-
fort has been made to explore the appropriateness of the prop-
erties of the oracle for dynamic selection. We believe that the
complicated process of local classifier accuracy estimation can
actually be carried out by the oracle on a validation data set,
and a simple KNN method can allow the test data set to obtain
the approximate local classifier accuracy from the validation
data set. Here are the key questions that need to be addressed:

(1) Can the concept of the oracle be useful in dynamic ensem-
ble selection?

(2) Can dynamic ensemble selection outperform dynamic
classifier selection?

(3) Can dynamic ensemble selection outperform static ensem-
ble selection?

To answer these questions, we propose a dynamic ensemble
selection scheme which explores the properties of the oracle
concept, and compare the scheme with static ensemble selection
guided by different objective functions. All the approaches are
evaluated on small-scale pattern recognition problems taken
from the UCI machine learning repository, and on a large-
scale pattern recognition problem related to the recognition
of handwritten numerals from NIST SD19. It is important to
state that the purpose of this work is not to achieve the best
handwritten pattern recognition rate using dynamic selection,
but to explore a potential advantage of dynamic selection which
might suit the nature of the dynamic environment in machine
learning, such as incremental learning. In order to gain a better
understanding of the impact of dynamic selection, we use weak
classifiers in our experiment.

2. Dynamic classifier selection methods
2.1. Overall local accuracy (OLA)

The basic idea of this scheme is to estimate each individual
classifier’s accuracy in local regions of the feature space sur-
rounding a test sample, and then use the decision of the most
locally accurate classifier [15]. Local accuracy is estimated as
the percentage of training samples in the region that are cor-
rectly classified.

2.2. Local class accuracy (LCA)

This method is similar to the OLA method, the only differ-
ence being that the local accuracy is estimated in respect of
output classes [15]. In other words, we consider the percent-
age of the local training samples assigned to a class c/; by this
classifier that have been correctly labeled.

2.3. A Priori selection method (A Priori)

The classifier accuracy can be weighted by the distances
between the training samples in the local region and the test

sample. Consider the sample x; € wy as one of the K-nearest
neighbors of the test pattern X. The p(wi|x;, ¢;) provided by
classifier ¢; can be regarded as a measure of the classifier ac-
curacy for the test pattern X based on its neighbor x;. If we
suppose that we have N training samples in the neighborhood,
then the best classifier Cy for classifying the sample X can be
selected by [10,12]:

YN Bloxlxj € ax. )W,
N
Zj:l W]

where W;=1/d; is the weight, and d; is the Euclidean distance
between the test pattern X and the its neighbor sample x;.

; ey

C, = arg; max

2.4. A Posteriori selection method (A Posteriori)

If the class assigned by the classifier ¢; is known, then we
can use the classifier accuracy in the aspect of the known class.
Suppose that we have N training samples in the neighborhood
and let us consider the sample x; € wy as one of the K-nearest
neighbors of the test pattern X. Then, the best classifier Cy(wy)
with the output class wy for classifying the sample X can be
selected by [10,12]:

D xjew, POKIx), cOW;
Y Ploxlx), c)W;

where W;=1/d; is the weight, and d; is the Euclidean distance
between the test pattern x and the its neighbor sample x;.

Cy(wy) = arg; max

@

3. K-nearest-oracles (KNORA) dynamic ensemble
selection

All the above dynamic selection methods are designed to
find the classifier with the greatest possibility of being correct
for a sample in a pre-defined neighborhood. We, however, are
proposing another approach: Instead of finding the most suit-
able classifier, we select the most suitable ensemble for each
sample.

The concept of the K-nearest-oracles (KNORA) is similar
to the concepts of OLA, LCA, and the A Priori and A Pos-
teriori methods in their consideration of the neighborhood of
test patterns, but it can be distinguished from the others by
the direct use of its property of having training samples in the
region with which to find the best ensemble for a given sam-
ple. For any test data point, KNORA simply finds its nearest
K neighbors in the validation set, figures out which classifiers
correctly classify those neighbors in the validation set and uses
them as the ensemble for classifying the given pattern in that
test set.

We propose four different schemes using KNORA:

(1) KNORA-ELIMINATE
Given K neighbors x;, 1 <j<K of a test pattern X, and
supposing that a set of classifiers C(j), 1 < j <K correctly
classifies all its K-nearest neighbors, then every classifier
c¢i € C(j) belonging to this correct classifier set C(j)
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Feature Space
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Fig. 2. The KNORA-ELIMINATE only uses classifiers that correctly classify
all the K -nearest patterns. On the left side, test pattern is shown as a hexagon,
validation data points are shown as circles and the 5 nearest validation points
are darkened. On the right side, the used classifiers—the intersection of
correct classifiers—are darkened.

Feature Space Classifier Space

Fig. 3. The KNORA-UNION uses classifiers that correctly classify any of
the K-nearest patterns. On the left side, test pattern is shown as a hexagon,
validation data points are shown as circles, and the 5 nearest validation points
are darkened. On the right side, the used classifiers—the union of correct
classifiers—are darkened.

should submit a vote on the sample X. In the case where no
classifier can correctly classify all the K -nearest neighbors
of the test pattern, then we simply decrease the value of K
until at least one classifier correctly classifies its neighbors
(Fig. 2).

(2) KNORA-UNION
Given K neighbors x;, I<j<K of a test pattern X, and
supposing that the j-nearest neighbor has been correctly
classified by a set of classifiers C(j), 1 < j <K, then every
classifier ¢; € C(j) belonging to this correct classifier set
C(j) should submit a vote on the sample X. Note that, since
all the K -nearest neighbors are considered, a classifier can
have more than one vote if it correctly classifies more than
one neighbor. The more neighbors a classifier classifies
correctly, the more votes this classifier will have for a test
pattern (Fig. 3).

(3) KNORA-ELIMINATE-W
This scheme is the same as KNORA-ELIMINATE, but each
vote is weighted by the Euclidean distance between the
neighbor pattern x; and the test pattern X.

(4) KNORA-UNION-W
This scheme is the same as KNORA-UNION, but each vote
is weighted by the Euclidean distance between the neighbor
pattern x; and the test pattern X.

We should note that these four strategies are relatively simple
and intuitive. Nevertheless, these initial strategies will give us
a glimpse on whether or not a dynamic ensemble selection
might be better than a dynamic classifier selection in some
circumstances. It is not our intention to carry out a complete
and detailed optimization on the dynamic ensemble selection,
and it still remains a question how to select the optimal subset.

3.1. Comparison of dynamic selection schemes on UCI
machine learning repository

To ensure that KNORA is useful for dynamic ensemble se-
lection, we tested it on problems extracted from a UCI machine
learning repository. There are several requirements for the se-
lection of pattern recognition problems. First, to avoid identi-
cal samples being trained in Random Subspace, only databases
without symbolic features are used. Second, to simplify the
problem, we do not use databases with missing features. In ac-
cordance with the requirements listed above, we carried out our
experiments on 6 databases selected from a UCI data repository
(see Table 1). In general, among the available samples, 50% are
used as a training data set and 50% are used as a test data set,
except for the Image Segmentation data set, the training data
set and test data set of which have been defined on the UCI
data repository. Of the training data set, 70% of the samples
are used for classifier training and 30% are used for validation.

Three ensemble creation methods have been used in our
study: Random Subspaces, Bagging and Boosting [7]. The
Random Subspaces method creates various classifiers by using
different subsets of features to train them. Bagging generates
diverse classifiers by randomly selecting subsets of samples
to train classifiers. Similar to Bagging, Boosting uses parts of
samples to train classifiers as well, but not randomly. Difficult
samples have a greater probability of being selected, and easier
samples have less chance of being used for training. The car-
dinality of Random Subspaces is set under the condition that
all classifiers have recognition rates of more than 50%.

The three different classification algorithms used in our ex-
periments are KNN, Parzen windows classifiers (PWC) and
quadratic discriminant classifiers (QDC) [16]. For each of 6
databases and for each of 3 classification algorithms, 10 clas-
sifiers were generated to constitute the pool of classifiers. We
used different dynamic selection schemes to select ensembles
from the pools of 10 classifiers, and then combined these en-
sembles with the simple majority voting rule (MAJ).

3.2. Random Subspace

The Random Subspace method creates diverse classifiers by
using different subsets of features to train classifiers. Due to the
fact that problems are represented in different subspaces, dif-
ferent classifiers develop different borders for the classification.

For Random Subspace, we observe that KNORA-UNION
and LCA have more stable performances than other methods.
We also observe that the A Priori and A Posteriori methods
are not necessarily better than OLA or LCA (see Tables 2—4).
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Table 1

UCI data for ensembles of classifiers

Database Classes Tr Ts Features RS-Card. Bagging (%) Boosting (%)
Liver-disorders (LD) 2 172 172 6 4 66 66
Pima-diabetes (PD) 2 384 384 8 4 66 66
Wisconsin breast-cancer (WC) 2 284 284 30 5 66 66

Wine (W) 3 38 88 13 6 66 66

Image segmentation (IS) 7 210 2100 19 4 66 66

Letter recognition (LR) 26 10 000 10 000 16 12 66 66

Tr = training samples; Ts = test samples; RS-Card = Random Subspace Cardinality; Bagging = proportion of samples used for Bagging; Boost =
proportion of samples used for Boost.

Table 2
Dynamic selection results for Random Subspace using KNN classifiers

Database KN-E KN-E-W KN-U KN-U-W A Priori A Posteriori OLA LCA Oracle All Single best
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
LD 78.47 78.47 80.56 84.03 77.78 70.14 79.17 70.83 100.00 76.39 74.31
PD 97.54 97.54 96.83 96.48 94.37 93.66 96.83 93.66 98.25 96.13 96.83
WwC 93.66 93.66 94.37 93.66 90.85 80.99 93.31 88.38 99.65 92.61 95.07
w 97.73 97.73 97.73 97.73 97.73 37.50 97.73 97.73 97.73 76.14 90.91
IS 78.29 78.29 78.67 78.62 75.81 60.90 75.43 59.62 97.29 78.19 84.14
LR 83.33 83.33 83.85 84.20 84.84 87.02 84.84 87.24 94.78 83.08 85.32

KN-E =KNORA-ELIMINATE; KN-E-W = KNORA-ELIMINATE-W; KN-U = KNORA-UNION; KN-U-W = KNORA-UNION-W. All =the combined perfor-
mances of all classifiers. Single best=the performance of the best classifier from the pool. The best classification rates of each method within the neighborhood

sizes 1 <k <30 are shown.
Bold values are the best performances in each row of table.

Table 3
Dynamic selection results for Random Subspace using Parzen classifiers

Database KN-E KN-E-W KN-U KN-U-W A Priori A Posteriori OLA LCA Oracle All Single best
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
LD 71.53 71.53 72.22 75.00 75.00 65.28 71.53 67.36 89.58 70.83 75.00
PD 82.82 82.82 82.03 82.29 81.51 65.63 80.99 77.08 92.19 78.12 79.69
wC 92.96 92.96 92.96 92.96 91.20 83.10 93.31 87.68 98.94 91.55 92.96
w 88.64 88.64 81.82 89.77 87.50 84.09 89.77 90.91 100.00 76.14 88.71
IS 79.90 79.90 80.05 80.19 78.10 64.90 77.76 64.76 98.48 79.62 85.38
LR 89.07 89.07 89.68 89.81 90.51 88.43 90.51 88.49 96.70 89.52 90.61

KN-E =KNORA-ELIMINATE; KN-E-W = KNORA-ELIMINATE-W; KN-U = KNORA-UNION; KN-U-W = KNORA-UNION-W. All =the combined perfor-
mances of all classifiers. Single best=the performance of the best classifier from the pool. The best classification rates of each method within the neighborhood

sizes 1 <k <30 are shown.
Bold values are the best performances in each row of table.

Table 4
Dynamic selection results for Random Subspace using QDC classifiers

Database KN-E KN-E-W KN-U KN-U-W A Priori A Posteriori OLA LCA Oracle All Single best
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
LD 63.89 63.89 61.11 70.19 61.81 70.14 65.28 68.06 88.19 57.64 64.58
PD 80.21 80.21 80.21 80.21 79.69 63.28 80.21 75.26 93.23 77.86 79.43
wC 95.42 95.42 95.07 95.07 92.25 88.03 95.42 90.85 99.65 93.66 96.48
w 98.86 98.86 97.73 98.86 97.73 96.59 97.73 95.45 100.00 96.59 96.77
1S 83.29 83.29 81.76 82.19 83.14 39.52 84.19 37.76 95.29 78.24 83.24
LR 83.97 83.97 84.62 85.00 81.96 85.99 81.96 86.73 93.40 84.36 82.44

KN-E = KNORA-ELIMINATE; KN-E-W = KNORA-ELIMINATE-W; KN-U = KNORA-UNION; KN-U-W = KNORA-UNION-W. All = the combined perfor-
mances of all classifiers. Single best=the performance of the best classifier from the pool. The best classification rates of each method within the neighborhood

sizes 1 <k <30 are shown.
Bold values are the best performances in each row of table.
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Table 5
Dynamic selection results for Bagging using KNN classifiers

Database KN-E KN-E-W KN-U KN-U-W A Priori A Posteriori OLA LCA Oracle All Single best
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
LD 59.03 59.03 60.42 60.42 58.33 60.42 59.03 59.72 79.17 60.42 63.19
PD 74.22 74.22 74.74 74.74 73.70 72.92 74.22 72.92 90.10 75.00 75.26
wWC 94.72 94.72 93.66 94.01 93.31 92.96 94.72 93.31 96.83 93.66 94.72
w 73.86 73.86 73.86 73.86 75.00 73.86 73.86 73.86 81.82 72.73 73.86
IN 87.67 87.67 87.67 87.67 86.67 85.24 86.52 87.67 93.19 86.24 84.57
LR 93.89 93.89 93.94 93.94 93.07 93.97 93.07 94.05 97.64 93.76 92.33

KN-E = KNORA-ELIMINATE; KN-E-W = KNORA-ELIMINATE-W; KN-U = KNORA-UNION; KN-U-W = KNORA-UNION-W. All =the combined perfor-
mances of all classifiers. Single best=the performance of the best classifier from the pool. The best classification rates of each method within the neighborhood

sizes 1 <k <30 are shown.
Bold values are the best performances in each row of table.

Table 6
Dynamic selection results for Bagging using Parzen classifiers

Database KN-E KN-E-W KN-U KN-U-W A Priori A Posteriori OLA LCA Oracle All Single best
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
LD 67.36 67.36 66.67 68.75 68.06 61.81 67.36 62.50 94.44 65.28 68.06
PD 74.74 74.74 72.40 71.88 73.70 74.22 74.22 74.48 84.64 71.88 72.40
WwC 94.72 94.72 93.31 93.31 93.31 92.61 95.07 92.61 97.18 91.90 94.01
w 73.86 73.86 73.86 73.86 76.14 73.86 76.14 73.86 85.23 71.59 73.86
IN 84.62 84.62 82.90 82.95 84.43 82.14 83.76 84.43 89.90 80.00 81.76
LR 94.51 94.51 94.56 94.58 93.72 94.17 93.72 94.22 97.63 94.33 92.99

KN-E = KNORA-ELIMINATE; KN-E-W = KNORA-ELIMINATE-W; KN-U = KNORA-UNION; KN-U-W = KNORA-UNION-W. All =the combined perfor-
mances of all classifiers. Single best=the performance of the best classifier from the pool. The best classification rates of each method within the neighborhood

sizes 1 <k <30 are shown.
Bold values are the best performances in each row of table.

This means that the probabilities weighted by the Euclidean
distances between the test pattern and validation patterns are
not always useful for dynamic classifier selection.

Similarly, we note that KNORA-UNION-W is not always
better than KNORA-UNION. More interestingly, KNORA-
ELIMINATE-W and KNORA-ELIMINATE have the same
performances on Random Subspaces. This indicates that the
probabilities weighted by the Euclidean distances between the
test pattern and validation patterns do not affect the decisions
of KNORA-ELIMINATE on Random Subspaces.

3.3. Bagging

Bagging generates diverse classifiers by randomly selecting
subsets of samples to train classifiers. Intuitively, we can see
that classifiers will have different behaviors based on different
sample subsets.

For Bagging, we note that KNORA-ELIMINATE, KNORA-
UNION and LCA have good performances. As with Random
Subspaces, A Priori and A Posteriori are not necessarily
better than OLA or LCA on Bagging. Again, KNORA-
UNION-W is not always better than KNORA-UNION (see
Tables 5-7). This indicates that the probabilities weighted by
the Euclidean distances between the test pattern and validation
patterns do not always contribute to higher classification rates

for either dynamic classifier selection or dynamic ensemble
selection.

Still, KNORA-ELIMINATE-W and KNORA-ELIMINATE
have the same performances on Bagging.

3.4. Boosting

Boosting uses a part of the samples to train classifiers, but not
randomly. As stated above, difficult samples have higher prob-
ability of being selected, and easier samples have less chance
of being used for training. With this mechanism, most of the
classifiers created will focus on hard samples and can be more
effective.

For Boosting, KNORA-ELIMINATE, KNORA-UNION
and LCA seem to be quite stable. We observe the same
situations as for Random Subspaces and Bagging: the A
Priori and A Posteriori methods are not necessarily better
than OLA or LCA; KNORA-UNION-W is not always bet-
ter than KNORA-UNION, and KNORA-ELIMINATE-W
and KNORA-ELIMINATE have the same performances (see
Tables 8-10).

However, these results cannot discount the usefulness of the
probabilities weighted by the Euclidean distances between the
test pattern and validation patterns, because, in many problems,
the number of samples is quite small. Moreover, since there
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Table 7

Dynamic selection results for Bagging using QDC classifiers

Database KN-E KN-E-W KN-U KN-U-W A Priori A Posteriori OLA LCA Oracle All Single best
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

LD 70.83 70.83 63.89 66.67 68.75 61.11 70.14 62.50 91.67 56.94 68.75

PD 74.22 74.22 74.48 73.96 73.70 72.66 74.48 72.92 83.85 73.96 74.22

wC 97.89 97.89 96.83 96.83 97.54 98.94 97.54 99.30 100.00 96.83 98.24

W 100.00 100.00 98.86 98.86 94.32 94.32 94.32 95.45 100.00 97.73 96.59

IS 100.00 100.00 99.14 97.33 100.00 91.29 100.00 100.00 100.00 100.00 100.00

LR 89.70 89.70 89.01 88.99 89.64 91.04 89.61 91.29 92.81 88.47 88.21

KN-E = KNORA-ELIMINATE; KN-E-W = KNORA-ELIMINATE-W; KN-U = KNORA-UNION; KN-U-W =KNORA-UNION-W. All =the combined perfor-
mances of all classifiers. Single best=the performance of the best classifier from the pool. The best classification rates of each method within the neighborhood

sizes 1 <k <30 are shown.
Bold values are the best performances in each row of table.

Table 8

Dynamic selection results for Boosting using KNN classifiers

Database KN-E KN-E-W KN-U KN-U-W A Priori A Posteriori OLA LCA Oracle All Single best
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
LD 66.67 66.67 64.58 65.28 65.97 64.58 65.28 65.28 90.28 62.50 62.50
PD 72.14 72.14 71.88 71.09 73.44 73.44 75.00 73.44 91.67 71.09 72.14
wC 95.77 95.71 95.42 96.13 95.42 94.72 94.37 95.42 96.83 95.42 95.42
w 73.86 73.86 73.86 73.86 73.86 73.86 73.86 76.14 78.41 71.59 73.86
IS 86.57 86.57 86.57 86.57 86.86 86.71 86.86 87.67 90.00 86.43 87.67
LR 93.57 93.57 93.79 93.80 92.76 93.95 92.75 94.00 97.20 93.62 92.57

KN-E =KNORA-ELIMINATE; KN-E-W = KNORA-ELIMINATE-W; KN-U = KNORA-UNION; KN-U-W = KNORA-UNION-W. All =the combined perfor-
mances of all classifiers. Single best=the performance of the best classifier from the pool. The best classification rates of each method within the neighborhood

sizes 1 <k <30 are shown.
Bold values are the best performances in each row of table.

Table 9

Dynamic selection results for Boosting using Parzen classifiers

Database KN-E KN-E-W KN-U KN-U-W A Priori A Posteriori OLA LCA Oracle All Single best
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
LD 66.67 66.67 67.36 72.92 63.89 63.89 66.67 68.06 100.00 65.97 63.89
PD 74.74 74.74 73.96 73.18 73.70 71.61 75.00 73.18 99.74 72.40 73.18
wC 93.31 93.31 92.96 92.96 92.96 92.96 93.31 92.96 94.72 92.96 92.96
w 80.68 80.68 77.27 81.82 78.41 73.86 79.55 73.86 95.45 75.00 79.55
IS 84.19 84.19 83.33 83.38 84.90 83.76 84.90 84.71 88.43 80.48 82.81
LR 94.03 94.03 94.07 94.10 93.02 94.17 92.95 94.19 97.29 94.13 93.18

KN-E = KNORA-ELIMINATE; KN-E-W = KNORA-ELIMINATE-W; KN-U = KNORA-UNION; KN-U-W = KNORA-UNION-W. All =the combined perfor-
mances of all classifiers. Single best=the performance of the best classifier from the pool. The best classification rates of each method within the neighborhood

sizes 1 <k <30 are shown.
Bold values are the best performances in each row of table.

Table 10

Dynamic selection results for Boosting using QDC classifiers

Database KN-E KN-E-W KN-U KN-U-W A Priori A Posteriori OLA LCA Oracle All Single best
(%) (%) (%) (%) (%) (%) CONCO NN () CONN(O
LD 73.61 73.61 77.08 77.08 70.14 61.81 73.61 64.58 96.53 70.83 75.00
PD 75.26 75.26 73.96 74.48 73.70 73.18 74.22 73.96 86.98 74.22 74.74
wC 97.18 97.18 96.83 97.18 95.77 97.89 95.77 97.89 98.59 96.83 97.89
N 96.59 96.59 96.59 96.59 96.59 97.73 96.59 96.59 97.73 96.59 97.73
IS 86.38 86.38 86.52 86.48 86.24 86.43 86.05 86.57 90.00 86.43 87.67
LR 93.54 93.54 93.69 93.73 92.63 93.95 92.61 94.00 97.20 93.62 92.57

KN-E = KNORA-ELIMINATE; KN-E-W = KNORA-ELIMINATE-W; KN-U = KNORA-UNION; All = the combined performances of all classifiers. Single

best = the performance of the best classifier from the pool. The best classification rates of each method within the neighborhood sizes 1 <k <30 are shown.
Bold values are the best performances in each row of table.
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are only 10 classifiers in a pool, there are not many choices for
either dynamic classifier selection or dynamic ensemble selec-
tion. This might also be a reason why KNORA-ELIMINATE
and KNORA-ELIMINATE-W have the same performances.

To conclude, the results demonstrate that using weak
classifiers, the dynamic ensemble selection can marginally
improve the accuracy, but not always performs better than
dynamic classifier selection. According to the ‘no free lunch’
theorem [17,18], it is understandable that one search algorithm
might not always be better than another search algorithm in
all problems. However, the unstable performance may be also
caused by the simplicity of ensemble selection strategy. Since
the oracles in a neighborhood might differ from one another,
this will result in the fact that non-optimal ensembles are
selected.

Although the experiments suggest that the four KNORA
schemes proposed for dynamic ensemble selection might be ap-
plicable in various ensemble creation methods—such as Ran-
dom Subspace, Bagging and Boosting—the problems extracted
from the UCI machine learning repository usually consist of a
small number of samples with few features. Furthermore, given
these constraints, the classifier pool is composed of only 10
classifier in our experiment, which makes the results less con-
vincing. As a result, we were able to justify the need to carry
out a larger scale experiment on a problem with more features
and larger classifier pools. This is why we conducted our next
experiment on a 10-class handwritten-numeral problem with
132 features and 100 classifiers.

4. Experiments for dynamic selection on handwritten
numerals

4.1. Experimental protocol for KNN

Our experiments were carried out on a 10-class handwritten-
numeral problem. The data were extracted from NIST SD19,
essentially as in Ref. [19], based on the ensembles of KNNs
generated by the Random Subspaces method. We used nearest-
neighbor classifiers (K = 1) for KNN, each KNN classifier
having a different feature subset of 32 features extracted from
the total of 132 features.

To evaluate the static ensemble selection and the dynamic en-
semble selection schemes, four databases were used: the train-
ing set with 5000 samples (hsf_{0 — 3}) to create 100 KNN
in Random Subspaces. The optimization set containing 10,000
samples (hsf_{0 — 3}) was used for GA searching for static
ensemble selection. To avoid overfitting during GA search-
ing, the selection set containing 10,000 samples (hsf_{0 — 3})
was used to select the best solution from the current popu-
lation according to the objective function defined, and then
to store it in a separate archive after each generation. Using
the best solution from this archive [20], the test set contain-
ing 60,089 samples (hsf_{7}) was used to evaluate the EoC
accuracies.

We need to address the fact that the classifiers used were
generated with feature subsets having only 32 features out of
a total of 132. The weak classifiers can help us better observe

Table 11
The recognition rates on test data of ensembles searched by GA with the
mean classifier error, majority voting error

OF Min (%) Q1 (%) Median (%) Qv (%) Max (%)
ME 94.18 94.18 94.18 94.18 94.18
MVE 96.32 96.41 96.45 96.49 96.57

ME = mean classifier error; MVE = majority voting error; OF = objective
functions. Min=minimum accuracy of ensembles; Max =maximum accuracy
of ensembles; Qy =upper quarter accuracy of ensembles; Q; =lower quarter
accuracy of ensembles; Median = median accuracy of ensembles.

the effects of EoCs. If a classifier uses all the available features
and all the training samples, a much better performance can
be observed [10,11]. But, since this is not the objective of this
paper, we are focusing on the improvement of EoCs through
the optimization of performances by combining classifiers. The
benchmark KNN classifier uses all 132 features, and so, with
K =1, we can have 93.34% recognition rates. The combination
of all 100 KNN by simple MAJ gives 96.28% classification
accuracy. The possible upper limit of classification accuracy
(the oracle) is defined as the ratio of samples classified correctly
by at least one classifier in a pool to all samples. The oracle is
99.95% accurate for KNN.

4.2. Static ensemble selection with classifier performance

The MVE was tested because of its reputation as one of the
best objective functions in selecting classifiers for ensembles
[8]. It directly evaluates the global EoC performance by the
MAIJ. For this reason, we tested the MAJ as the objective func-
tion for static and dynamic ensemble selection, as well as us-
ing it as the fusion function. We also tested the mean classifier
error (ME).

In Table 11, we observe that the MVE performs better than
the ME as an objective function for static ensemble selection.
The ensemble selected by the MVE also outperforms that of
all 100 KNNs.

4.3. Dynamic ensemble selection

Even though the MVE has thus far been able to find the best
ensemble for all the samples, this does not mean that a sin-
gle ensemble is the best solution for combining classifiers. In
other words, each sample may have a most suitable ensemble
that is different from that of the others. We intend to determine
whether or not the use of different ensembles on different sam-
ples can further increase the accuracy of the system.

Note that dynamic ensemble selection does not use any
search algorithm for selecting the ensemble, because each sam-
ple has its own ensemble for the classifier combination. As a
result, it was not necessary to repeat the search.

For dynamic ensemble selection, only three databases were
used: the training set with 5000 samples (hsf_{0 — 3}) to create
100 KNN in Random Subspaces, the optimization set contain-
ing 10,000 samples (hsf {0 — 3}) and the test set containing
60,089 samples (hsf_{7}) to evaluate the EoC accuracies. We
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Table 12

The best recognition rates of each dynamic ensemble selection methods within the neighborhood sizes 1 <k <30

KN-E KN-E-W KN-U KN-U-W OLA LCA A Priori A Posteriori
RR 97.52% 97.52% 97.25% 97.25% 94.11% 97.40% 94.12% 97.40%
K -value 7,8 7.8 1 1 30 1 30 1

RR = recognition rates.
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Fig. 4. The performances of proposed dynamic ensemble selection schemes
based on different neighborhood sizes 1<k <30 on NIST SDI9 database.
In the figure KNORA-ELIMINATE overlaps with KNORA-ELIMINATE-W,
and KNORA-UNION overlaps with KNORA-UNION-W.

tested the four KNORA algorithms and compared them with
the other proposed schemes: OLA, LCA, and the A Priori and
A Posteriori local class accuracy methods.

We note that most of the dynamic schemes have so far
proved better than all the tested objective functions for static
ensemble selection. The exceptions are OLA and the A Pri-
ori method. Both LCA and the A Posteriori method achieved
very good performances, with 97.40% recognition rates. But
KNORA-ELIMINATE and KNORA-ELIMINATE-W have
good performances as well, and, with recognition rates of
97.52%, KNORA-ELIMINATE and KNORA-ELIMINATE-W
turned out to constitute the best dynamic selection scheme for
our handwritten-numeral problems (Table 12).

However, KNORA-UNION and KNORA-UNION-W do not
perform as well as KNORA-ELIMINATE. They are still better
than OLA and the A Priori method, but not as good as LCA
and the A Posteriori method (Fig. 4).

If we compare their performances in different neighborhood
sizes, we note that, while the LCA and A Posteriori dynamic se-
lection schemes outperform static GA selection with the MVE
as the objective function in a small neighborhood, their perfor-
mances declined with an increase in the value of k (Fig. 5). In
this case, static GA selection with the MVE may still be bet-
ter than the LCA or A Posteriori dynamic selection schemes.
By contrast, KNORA-ELIMINATE has a more stable perfor-
mance, even when the value of k increases. It gives a better
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Fig. 5. The performances of various ensemble selection schemes based on
different neighborhood sizes 1 <k <30 on NIST SD19 database. In the figure
OLA overlaps with A Priori selection.

recognition rates than all the other schemes in our experimen-
tal study, except when k = 1. But still, the stable performance
of KNORA-ELIMINATE suggests that the dynamic selection
schemes are worthy of more attention.

4.4. Effect of validation sample size

Since all the traditional dynamic selection schemes and
KNORA take into account the neighborhood of the test pattern
for classifier and ensemble selection, the size of the validation
samples will have somewhat of an effect on these methods.

We thus varied the size of the validation samples from
1000 to 10,000 samples, and measured the impact of the vari-
ation on these dynamic selection schemes. As the number
of validation samples increases, a test pattern is more likely
to have better nearest neighbors. These nearest neighbors
might also better distinguish truly useful classifiers from the
pool.

Our results seem to confirm this supposition. When the
validation sample size increases, all four proposed KNORA
methods show slight improvement (Fig. 6). However, for the
traditional dynamic selection schemes, the benefit to be derived
from the increase in validation samples seems to be less sta-
ble. We observe some fluctuations in classification accuracy
on the four traditional dynamic selection schemes when the
validation sample size increases (Fig. 7).
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The interesting point is that all four KNORA methods
demonstrate better performances than other traditional dynamic
selection schemes when the validation sample size is small.
Also note that the increase in sample size does not necessarily
increase the selected ensemble sizes (Figs. 8 and 9).

4.5. Effect of classifier pool size

The classifier pool size has a clear effect on the perfor-
mances of the proposed KNORA methods. While all four of
these methods show improvement as the classifier pool size
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Fig. 8. The relationship between selected ensemble size and neighborhood
size on different validation sample sizes from 1000 to 10,000 on NIST SD19
database for KNORA-ELIMINATE. The classifier pool size is 100.
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Fig. 9. The relationship between selected ensemble size and neighborhood
size on different validation sample sizes from 1000 to 10,000 on NIST SD19
database for KNORA-UNION. The classifier pool size is 100.

increases, KNORA-ELIMINATE and KNORA-ELIMINATE-
W show a better improvement than KNORA-UNION and
KNORA-UNION-W (Fig. 10).

Compared with the traditional dynamic selection schemes,
we note that KNORA-ELIMINATE is apparently superior to
OLA and the A Priori method, but is not necessarily better
than LCA or the A Posteriori method (Fig. 11). It is clear
that the increase in classifier pool size benefits all kinds
of dynamic selection methods, because more classifiers are
available. Nevertheless, KNORA-ELIMINATE has shown
more improvement than other dynamic selection schemes.
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Fig. 11. The performances of various ensemble selection schemes based
on different classifier pool sizes from 10 to 100 on NIST SD19 database.
The best performances from neighborhood sizes 1<k <30 are shown. The
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We note that, when there are fewer than 70 classifiers in the
pool, LCA and the A Posteriori method outperform KNORA-
ELIMINATE. By contrast, when there are more than 70
classifiers in the pool, KNORA-ELIMINATE has a slightly
better classification accuracy than LCA and the A Posteriori
method.

This is an interesting finding, since it indicates that the
KNORA methods are better suited to large classifier pools.
Since problems extracted from the UCI machine learning repos-
itory use only relatively small classifier pools, this might be
why KNORA is not always better than the traditional dynamic

selection schemes. Moreover, we also note that the increase in
sample size does lead to the increase in the selected ensemble
sizes (Figs. 12 and 13).

5. Discussion

In this paper, we propose a new dynamic ensemble selection
scheme which directly applies the concept of the oracle on the
validation set. Unlike other dynamic selection methods which
use the estimated best classifier for a certain data point, the K -
nearest oracle uses the EoCs that are estimated to be the best
for dynamic ensemble selection.

In our study of handwritten numerals, the proposed method
apparently outperforms the static ensemble selection schemes
such as the use of the MVE or the ME as the objective func-
tion in a GA search. Using the GA search, the MVE can
achieve 96.45% recognition rates, and ME 94.18%. Neverthe-
less, with 97.52% recognition rates, KNORA-ELIMINATE is
significantly better than the static ensemble selection methods
evaluated.

We note that the OLA and A Priori dynamic selection
schemes were not as good as the static GA selection scheme
with the MVE. The OLA takes into the account neither class
dependence nor the weighting of each classifier, while the A
Priori method ignores class dependence. Since our experiment
has a high class dimension (10) and the ensemble pool size is
quite large (100), it is not surprising that they do not perform
well.

We also observe that KNORA-UNION and KNORA-
UNION-W perform less well than KNORA-ELIMINATE or
KNORA-ELIMINATE-W. This might be due to the extreme
elitism in the behavior of the oracle. Since only very few
classifiers can correctly classify some difficult patterns, the
increase in ensemble size does not lead to a better recognition
rate. So, when the value of K increases, the performances of
KNORA-UNION and KNORA-UNION-W decline.

KNORA-ELIMINATE also performs slightly better than the
other dynamic selection schemes. The LCA and A Posteri-
ori schemes can achieve recognition rates of 97.40%, which
is better than the other static methods, but not as good as
KNORA-ELIMINATE. However, the performance of KNORA-
ELIMINATE is still far from the oracle, which can achieve rates
of 99.95%.

This might indicate that addressing the behavior of the oracle
is much more complex than applying a simple neighborhood
approach, and that the task of figuring out its behavior merely
based on the pattern feature space is not an easy one.

Considering the effect of validation sample size, we note
that all four KNORA methods demonstrate much better perfor-
mances than other traditional dynamic selection schemes when
the validation sample size is small. On the contrary, classifier
pool size has an even more dramatic effect on KNORA perfor-
mances. In general, when there are few classifiers in the pool,
LCA and the A Posteriori method outperform the KNORA
methods. However, when the classifier pool size increases,
KNORA seems to improve more than LCA and the A Poste-
riori method. When a number of classifiers is given, KNORA
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Fig. 13. The relationship between selected ensemble size and neighborhood size on different classifier pool sizes from 10 to 100 on NIST SD19 database for

KNORA-UNION. The validation sample size is 10,000.

seems to perform better than either LCA or the A Posteriori
method (Fig. 11).

Note that, for an ensemble of M KNN classifiers with N
training samples and with total features d and a cardinal-
ity of features c (size of fixed feature subspaces), we can
first pre-calculate the Euclidean distance on each feature.
This pre-calculation has the complexity O(d - N). After
the pre-calculation, we only need to carry out the summa-

tion and the sorting calculation, which have the complexity
O(M - (c- N + NlogN)) of the ensemble, rather than the
complexity O(d - N + Nlog N) of a single KNN classifier.
In our study, the best dynamic selection scheme is KNORA-
ELIMINATE with the neighborhood size 7, which used 76
classifiers on average, which means that its ensemble is 11.78
times more complex than a single KNN classifier, including
the pre-calculation cost. However, the best performance of
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KNORA-ELIMINATE is 4.18% better than that of a single
KNN classifier.

Finally, we must emphasize that the purpose of this work is
not to achieve the best handwritten pattern recognition rate us-
ing dynamic selection, but to explore the potential advantages
of dynamic selection that might suit the nature of the dynamic
environment in machine learning, such as incremental learn-
ing. In order to gain a better understanding of the impact of
dynamic selection, we use 100 KNN classifiers trained with
only 5000 samples in our experimental study. The combina-
tion of these 100 KNN by simple MAJ gives only a 96.28%
recognition rate. Considering other classification methods ap-
plied in the same data set, KNN trained with 150000 samples
can achieve 98.57% accuracy, MLP can achieve 99.16% accu-
racy [21], and the use of SVM can achieve a 99.30% recogni-
tion rate with a pairwise coupling strategy and a 99.37% rate
with the one-against-all strategy [22]. However, the use of weak
classifiers can demonstrate more differences between various
ensemble selection schemes, which makes this a better option
for comparing different ensemble selection schemes.

6. Conclusion

We describe a methodology to dynamically select an en-
semble for every test data point. We find that by the direct
use of the concept of the oracle, the proposed scheme appar-
ently gives better performances than static ensemble selection
schemes such as GA with the MVE as the objective function.
Moreover, the proposed scheme also perform slightly better
than other dynamic selection methods in our study.

We show that a dynamic ensemble selection scheme can, in
some cases, perform better than some static ensemble selection
methods. Furthermore, our study suggests that an ensemble of
classifiers might be more stable than a single classifier in the
case of dynamic selection. Yet our method is limited by the
uncertainty of the behavior of the oracle, since the recognition
rates achieved are still not close to those of the oracle.

Our study also arises more questions, such as how to guar-
antee the optimality and generalization of such selection, since
the number of possible combination is very large. The four
strategies presented in this paper are simple and straightfor-
ward, there is still enough space for further improvements. We
believe that this methodology can be greatly enhanced with
theoretical studies on the connection between the feature sub-
spaces and the classifier accuracies, the influence of geometri-
cal and topological constraints on the oracle, better statistical
studies to quantify the uncertainty of the oracle’s behavior and
empirical studies in more real-world problems with various en-
semble generation methods.
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